
Theoretical and observational aspects of physical

processes in the �eld of compact objects

Kateøina Klimovièová

DISSERTATION





SLEZSKÁ UNIVERZITA V OPAVÌ
Filozo�cko-pøírodovìdecká fakulta

Theoretical and observational aspects

of physical processes in the �eld of

compact objects

Kateøina Klimovièová

Supervisor: doc. RNDr. Gabriel Török, Ph.D.

DISSERTATION OPAVA 2021





Acknowledgments

At this point, I would like to thank my current supervisor Gabriel Török and my former supervisor
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Preface

”Cı́lem vzdělánı́ a moudrosti je, aby člověk viděl před sebou jasnou cestu života, po nı́
opatrně vykračoval, pamatoval na minulost, znal přı́tomnost a předvı́dal budoucnost.“

Jan Ámos Komenský

In the form of a collection of annotated papers, the present dissertation represents an outcome
of my study at the Institute of Physics of the Silesian University in Opava.

During my studies, I encountered several different tasks some of which I will attempt to
summarize in the following lines. Despite their fragmented nature, they have one thing in
common. They are all related to the effort of explaining the quasi-periodic oscillations (QPOs)
present in the power density spectra of some low-mass X-ray binaries. The first chapter is
devoted to a summary of the main features of this phenomenon.

The chapter that follows is dedicated to a description of different models of QPOs. These
among others include several models that were proposed by our group in the papers (see
references in the second chapter).

The third chapter presents an analysis of the QPO data from twelve different sources. For
data fitting, we used models mentioned in Chapter 2. Some of the results presented in the third
chapter were taken from the literature. The majority were, however, obtained solely for the
purpose of this thesis.

The fourth chapter is devoted to simulations that should lead to a better understanding of
predictions of some QPO models described in the second chapter.

The eight selected papers annotated within the above four chapters are listed below. Their
full text is presented within Part II of this work. During my study, I collaborated on nine more
papers that I will not describe here. In two of them, including one Letter to the editor, I was the
main author. These are included within a separate list. Moreover, I was a co-author of about a
dozen of proceeding papers.

The list of annotated papers1:

• TÖRÖK, G.; BAKALA, P.; ŠRÁMKOVÁ, E.; STUCHLÍK, Z.; URBANEC, M. & GOLUCHOVÁ, K.:
Mass-Angular-momentum Relations Implied by Models of Twin Peak Quasi-periodic Os-
cillations. The Astrophysical Journal, 760, 138, 2012, 1408.4220.

• STUCHLÍK, Z.; KOTRLOVÁ, A.; TÖRÖK, G. & GOLUCHOVÁ, K.: Test of the Resonant Switch
Model by Fitting the Data of Twin-Peak HF QPOs in the Atoll Source 4U 1636-53. Acta
Astronomica, 64, 45–64, 2014.

1 Most articles were published under my maiden surname Goluchová.
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• BAKALA, P.; GOLUCHOVÁ, K.; TÖRÖK, G.; ŠRÁMKOVÁ, E.; ABRAMOWICZ, M. A.; VIN-
CENT, F. H. & MAZUR, G. P.: Twin peak high-frequency quasi-periodic oscillations as a
spectral imprint of dual oscillation modes of accretion tori. Astronomy & Astrophysics, 581,
A35, 2015, 1505.06673.

• STUCHLÍK, Z.; URBANEC, M.; KOTRLOVÁ, A.; TÖRÖK, G. & GOLUCHOVÁ, K.: Equations
of State in the Hartle-Thorne Model of Neutron Stars Selecting Acceptable Variants of
the Resonant Switch Model of Twin HF QPOs in the Atoll Source 4U 1636-53. Acta
Astronomica, 65, 169–195, 2015, 1507.00373.

• TÖRÖK, G.; GOLUCHOVÁ, K.; URBANEC, M.; ŠRÁMKOVÁ, E.; ADÁMEK, K.; URBANCOVÁ, G.;
PECHÁČEK, T.; BAKALA, P.; STUCHLÍK, Z.; HORÁK, J. & JURYŠEK, J.: Constraining Models
of Twin-Peak Quasi-periodic Oscillations with Realistic Neutron Star Equations of State.
The Astrophysical Journal, 833, 273, 2016, 1611.06087.

• TÖRÖK, G.; GOLUCHOVÁ, K.; HORÁK, J.; ŠRÁMKOVÁ, E.; URBANEC, M.; PECHÁČEK, T. &
BAKALA, P.: Twin peak quasi-periodic oscillations as signature of oscillating cusp torus.
Monthly Notices of the Royal Astronomical Society: Letters, 457, L19–L23, 2016, 1512.
03841.

• TÖRÖK, G.; GOLUCHOVÁ, K.; ŠRÁMKOVÁ, E.; HORÁK, J.; BAKALA, P. & URBANEC, M.:
On one-parametric formula relating the frequencies of twin-peak quasi-periodic oscillations.
Monthly Notices of the Royal Astronomical Society, 473, L136–L140, 2018, 1710.10901.

• TÖRÖK, G.; KOTRLOVÁ, A.; MATUSZKOVÁ, M.; KLIMOVIČOVÁ, K.; LANČOVÁ, D.; URBAN-
COVÁ, G. & ŠRÁMKOVÁ, E.: Simple analytic formula relating the mass and spin of accreting
compact objects to their rapid X-ray variability. Submitted to The Astrophysical Journal.

The list of other papers published in refereed journals:

• BAKALA, P.; TÖRÖK, G.; KARAS, V.; DOVČIAK, M.; WILDNER, M.; WZIENTEK, D.;
ŠRÁMKOVÁ, E.; ABRAMOWICZ, M.; GOLUCHOVÁ, K.; MAZUR, G. P. & VINCENT, F. H.:
Power density spectra of modes of orbital motion in strongly curved space-time: obtaining
the observable signal. Monthly Notices of the Royal Astronomical Society, 439, 1933–1939,
2014, 1401.4468.

• ŠRÁMKOVÁ, E.; TÖRÖK, G.; KOTRLOVÁ, A.; BAKALA, P.; ABRAMOWICZ, M. A.; STUCHLÍK,
Z.; GOLUCHOVÁ, K. & KLUZNIAK, W.: Black hole spin inferred from 3:2 epicyclic resonance
model of high-frequency quasi-periodic oscillations. Astronomy & Astrophysics, 578, A90,
2015, 1505.02712.

• GOLUCHOVÁ, K.; KULCZYCKI, K.; VIEIRA, R. S. S.; STUCHLÍK, Z.; KLUZNIAK, W. &

http://www.arxiv.org/abs/1505.06673
http://www.arxiv.org/abs/1507.00373
http://www.arxiv.org/abs/1611.06087
http://www.arxiv.org/abs/1512.03841
http://www.arxiv.org/abs/1512.03841
http://www.arxiv.org/abs/1710.10901


3
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Part I

Overview





Chapter 1

Low mass X-ray binaries

At the beginning of the twentieth century, German physicist Wilhelm Conrad Röntgen, during
his experiments, discovered a new type of radiation which he called X-rays. The medical
benefits of the discovery are so crucial that there can be no doubt about its utility. We had to
wait till the sixties of the last century for a more extensive use in astronomy. Then, the boom
of balloons, rockets, and satellite technologies allowed people-created devices to be placed
sufficiently long to a sufficient height for a systematic observation of the cosmos in the X-ray
spectra.

In 1962, nearly sixty years ago, the rocket Aerobee 150 targeted its detectors to space to
measure Sun’s X-rays reflected by the Moon. The possibility of a significant amount of X-rays
coming from places out of our Solar system was considered highly unlikely. However, X-rays
reflected by the Moon were overshadowed by another source that was unknown at that time. This
way, the first X-ray source from a place out of our Solar system was found in the constellation
of the Scorpion [1]. A frantic search in a new spectral band has started. There were found
thousands of surprisingly strong X-ray sources. Rockets, which could measure X-rays just for
a short time, were replaced in the 1970s by satellites or more noble X-ray observatories placed
on orbits high above the Earth’s surface.

The X-ray sources can be expected in the universe. Even our Sun emits this type of radiation
because of the high temperatures in the Solar corona. However, how to explain the existence of
the sources which are a thousand times brighter than our Sun? One of the proposed mechanisms
of X-ray generation assumes that the source is a binary system consisting of two components.
One of them is some compact object (a neutron star or a black hole). The second one can be
a main-sequence star, a red giant, or a white dwarf. The compact object’s counterpart must
have less mass than the compact object itself. Material from the companion component fills
Roche’s lobe and is moved. The material does not fall directly towards the compact object,
but an accretion disk is created. Due to friction, the material loses its angular momentum and
spirals down the compact object. The disk is heated to high temperatures and is bright in the
X-ray spectrum. Such configurations were called Low Mass X-ray Binaries (LMXBs). It is not
the only X-ray emission mechanism known today1. Nevertheless, about others, we will not talk

1 For example, some X-ray sources are so-called high mass X-ray binaries. The emission principle is similar to
that of LMXBs. However, the material of a more massive companion star does not overcome the critical closed
equipotential, but the accretion takes place due to stellar wind.
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here.
Unlike radiation in the visible field, X-ray radiation comes from areas close to a compact

object where the gravitational field is strong enough. It is not possible to describe this area by
Newtonian theory. It is necessary to use the results of General relativity2. By the discovery
of LMXBs, astrophysicists received an excellent opportunity to verify the predictions of this
theory.

In 1983, observatory EXOSAT (The European X-ray Observatory SATellite) was launched
to orbit Earth. When analyzing the measured light curves of the source GX-5, it turned out that
X-rays are changing with specific, time-varying frequencies on the order of dozens of hertz [2].
The effect was called the quasi-periodic oscillations. Until the year 1986, thanks to the satellite
EXOSAT, QPOs were also detected in other LMXBs.

1.1. High frequency quasi-periodic oscillations

Parameters of the EXOSAT Observatory allowed measurements of radiation changes with
frequencies in the order of dozens of hertz. Modern Rossi X-Ray Timing Explorer (RXTE),
launched in 1995, can measure even faster variability in the order of hundreds of hertz. It
turned out that incoming radiation varies with frequencies ranging from thousandths (10−3) to
hundreds (102) of hertz.

It seems that the most interesting are the so-called high frequency (HF) QPOs, typically in
the range of hundreds of hertz. This is because the frequency of orbital motion in the vicinity
of a compact object is just in the order of hundreds of hertz. It brought physicists to the idea
that X-ray variabilities called HF QPOs are due to oscillatory motions of some structures in
the vicinity of the compact object. If it is so, then analysis of this phenomenon can bring new
information about strong gravity areas.

HF QPOs are observed in both kinds of LMXBs. The one which involves a neutron star
or the one with a black hole. HF QPOs occurring in systems that we assume contain a black
hole have many features common to neutron star systems. However, there is no unity in the
community regarding whether or not the HF QPOs have the same origin in these two kinds of
LMXBs. We will not talk about black hole systems here. Let us say that the HF QPOs were
observed in four (or three) black hole LMXBs (see, e.g., [3]). A power spectrum of the two
LMXBs which contain black hole candidates can be seen in Figure 1.1.

1.2. High frequency quasi-periodic oscillations in neutron star Low

mass X-ray binaries

In the case of neutron star LMXBs, HF QPOs are characteristic by two sharp peaks in the power
density spectra (PDS). The peaks can be detected simultaneously or each peak separately. In

2 In this work, we assume that General relativity is the correct theory.
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Figure 1.1. HF QPOs in two black hole binary systems (adopted from [3]). The peaks positions do not
change with time in black hole systems. The ratios of oscillation frequencies are always close to 3 to 2.
On the contrary, in neutron star systems, the position of the peaks does change with time.

Figure 1.2 can be seen PDS of one of the neutron star LMXBs3. If both peaks are present in PDS
simultaneously, then the phenomenon is called the twin-peak HF QPOs4. The peaks have their
features. One peak was called lower QPOs peak with frequency νL and the second upper QPOs
peak with frequency νU . This naming is justified by the fact that if they are present together, it
applies νL < νU . Despite the fact that νL < νU the peaks position is changing with time. Figure
1.2 also shows frequency pairs νL,νU for twelve sources used in our papers [4–15]. For more
information about this phenomenon see e. g. [16, 17].
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Figure 1.2. QPOs in neutron star sources. The left: PDS of one of the QPO sources (adopted from [18]).
Middle: Frequency of peaks from the left panel together with QPO frequencies of the other sources.
Right: QPOs in twelve systems that contain neutron stars (see Table 1.2).

In the following chapters, we will work with a group of QPOs frequency pairs observed in
the PDS spectrum of twelve LMXBs. Table 1.2 shows a list of the LMXBs together with the
numbers of reported QPOs frequency pairs and references.

3 Here after we will talk about neutron stars or black holes, although we cannot be sure that this is not another
object.

4 From now on, we will use the term „QPOs“ as a synonym for twin-peak HF QPOs.
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Table 1.1. List of neutron star LMXBs that we use in papers ([4–14]) and that we will deal with in next
chapters of this work5 . There is also information about number of frequency pairs νU ,νL given from
observations (second and fifth column) together with references.

Source Data Ref. Source Data Ref.

4U 1608-52 25 [19–23] 4U 1636-53 91 [19, 19–21, 24–29]

4U 1735-44 11 [19–21, 30] 4U 1915-05 5 [31]

GX 17+2 18 [32, 33] Sco X-1 51 [25, 34–36]

Cir X-1 11 [37] 4U 1728-34 63 [19–21, 38–42]

4U 0614+09 77 [19–21, 43–45] 4U 1820-30 28 [19–21, 38]

GX 340+0 12 [46] GX 5-1 21 [47]

5 In papers [4–14], we use fourteen sources, but for two of them, we do not have suitable data for our analysis.



Chapter 2

QPO models

We proceed to the description of some often used models of QPOs which we have used
in [4–14, 48–52]. The list does not contain all the QPO models that were proposed in a
few decades of the QPO research (see for example [53–70]). We take into consideration the
models which connect QPOs with orbital motion of some objects in the inner parts of accretion
disks. Typically, these models connect frequencies of QPOs with some combinations of the
orbital (ΩK), radial (ωR) and vertical (ωΘ) epicyclic frequencies of a free test particle orbiting
in the vicinity of compact objects.

In Kerr geometry and Boyer-Lindquist coordinates, one can express the frequencies in the
form (see e.g. [71, 72])

ΩK =
c3

2πGM
1

j+ r3/2 , (2.1)

ωR = ΩK

√
−3 j2 +8 j

√
r+(−6+ r)r
r2 , (2.2)

ωΘ = ΩK

√
1+

j (3 j−4
√

r)
r2 , (2.3)

where M, j are the mass and the spin of the compact object.
In the Hartle-Thorne geometry (H-T), which describes the vicinity of a slowly rotating

neutron star with mass M, spin j and quadrupole moment q (see, e.g., [73]), the orbital ΩK ,
radial ωR and vertical ωΘ epicyclic frequencies of a free test particle can be expressed as [74, 75]

ΩK =
GM
c2

1
r3/2

[
1− j

r3/2 + j2F1(r)+qF2(r)
]
, (2.4)

ν
2
R =

(
GM
c2

)2 (r−6)
r4 [1+ jH1(r)− j2H2(r)−qH3(r)], (2.5)

ν
2
Θ =

GM
c2

1
r3 [1− jG1(r)+ j2G2(r)+qG3(r)], (2.6)

where F1(r),F2(r),H1(r),H2(r),H3(r),C(r),G1(r),G2(r),G3(r),B(r) can be found in [74, 75].
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For a space-time description around slowly rotating neutron stars, it is in general necessary
to use the H-T geometry. However, Kerr geometry can be used for slowly rotating neutron stars
with a sufficiently high mass (see, e.g., [4]).

As one can see in Figures 2.1 and 2.2, the frequency profiles (ΩK , ωR, ωΘ) depend on
the characteristics of the central compact object. Therefore, orbital models of QPOs can bring
information about the parameters of the central compact object.

In the following text, we will describe the main features of some of the most used models of
the QPOs, which deal with orbital motion in the close vicinity of compact objects.
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Figure 2.1. Radial profiles of orbital (ΩK), radial (ωR), and vertical (ωΘ) epicyclic frequency of a free
test particle in Kerr geometry. The frequencies are drawn for one solar mass (ΩK , ωR, ωΘ) and three
solar masses (ΩK/3, ωR/3, ωΘ/3). rms is the marginally stable circular orbit, rh indicates the position of
the black hole horizon.
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Figure 2.2. Radial profiles of orbital (ΩK), radial (ωR), and vertical (ωΘ) epicyclic frequency of free
test particles in the H-T geometry. The frequencies are drawn for a unit mass and two different values of
quadruple momentum q.
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2.1. Relativistic precession model

The Relativistic precession model (RP model) was introduced by Stella and his collaborators
at the end of the last century in a series of works [76–80]. The authors explain the emission
of QPOs as a result of orbiting hot spots in the inner parts of the accretion disk (see Fig. 2.3).
According to this model, the frequency of the lower peak should correspond to the periastron
precession frequency of a free test particle (νL = ωP = ΩK−ωR) and the frequency of the upper
peak should correspond to the frequency of the orbital motion of the particle (νU = ωK).

Figure 2.3. Illustration of the RP model. In the case of the RP model, the frequency of the upper
QPO peak correspond to the frequency of the orbital motion of a free test particle. The lower frequency
corresponds to the radial epicyclic frequency of the particle. If the compact object is a neutron star, then
rms can be below the surface.

2.2. Tidal disruption model

The Tidal disruption model (TD model) was proposed a few years ago by a predominantly
Slovenian group in the works [68, 81, 82]. The model assumes a cluster of material squeezed
by tidal forces when it orbits around a black hole (or, in our case, around a neutron star). The
cluster is squeezed along the trajectory (see Fig. 2.4 ). Oscillations of such an object are then
responsible for the observed X-ray variability. Frequency of the lower QPO peak corresponds
to the Keplerian frequency, νL = ΩK , the upper peak frequency corresponds to the sum of the
orbital and radial epicyclic frequencies of a free test particle (νU = ΩK +ωR).
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Figure 2.4. Illustration of the TD model. An initially spherical cluster of material is squeezed along
the trajectory because of tidal forces. Such an object then orbits a central compact object.

2.3. Resonant disk-oscillation models

Resonant-disk oscillation models are based on the effort to explain the reason for the clustering
of QPO frequencies ratios around ratios of small natural numbers.

The Epicyclic resonance model (ER model) was proposed by [59, 64, 83, 84]. It connects
the excitation of QPOs with axially symmetric modes of disk oscillations. The model assumes
that emissions are driven by a radially and vertically oscillating accretion torus in the vicinity
of a resonant radius (radius, where radial and vertical frequencies are in a ratio of small natural
numbers). Figure 2.5 shows such an oscillating torus. According to the model lower and upper
QPO peaks corresponds to the radial (νL = νR) and the vertical (νU = νΘ) epicyclic frequency,
respectively.

Another model from the class of resonant models is the Warped disk model (WD model).
The model was proposed by Kato [85–87]. Unlike ER model, it assumes non-axially symmetric
modes. The model connects the lower QPO frequency to νL = 2(νK − νR) and the upper to
νU = 2νK−νR.

The RP1 model was proposed by [67] and is also classified as a resonant model. The model
assumes the QPOs as a manifestation of an oscillating torus as it was in the ER model. However,
in this case, the frequency of the lower QPO peak should correspond to the precession frequency,
νL = ωP = ΩK−ωR, and the upper frequency corresponds to the vertical epicyclic frequency,
νU = ωΘ. In the Schwarzschild geometry with zero spin, the RP1 model merges with the RP
model. Figure 2.5 shows a torus oscillating as it is assumed by the RP1 model.

The last resonant-disk oscillation model is the RP2 model proposed by [88, 89]. The
behaviour of the torus can be seen in Figure 2.5. The lower frequency should correspond to
the precession frequency (νL = νK−νR) and the upper QPO frequency should correspond to a
difference between the double of the Keplerian frequency and the vertical epicyclic frequency
(νU = 2νK−νΘ). As in the previous case, the model matches the RP model in Schwarzschild
geometry.
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Figure 2.5. Oscillating torus schemes for the ER (Left), RP1 (middle) and RP2 (righ) model. The
colours symbolize torus positions in different parts of the oscillation period. The bottom row corresponds
to the side view. The top row corresponds to the top view.

2.4. Cusp torus model

Above, we have described several models, some of which assumed that QPOs are emitted
because of the accretion torus oscillating in the inner parts of the accretion disk. So far, the
torus was approximated by an infinitely thin ring. The structure oscillated with frequencies that
correspond to the oscillation frequencies of free test particles.

If one considers a slightly non-slender torus, the oscillation frequencies will be modified.
The pressure correction on the radial and vertical oscillating frequencies of an accretion torus
with non zero (but still small) thickness were computed in [90, 91]. For their complexity, we
will not specify them here.

Figure 2.6 shows equipotentials around the compact object in the vicinity of which, at the
radial coordinate r0, is an axially symmetric torus in hydrostatic equilibrium. The torus is made
by perfect fluid whose own gravity is negligible (see for example [92–94]). The material of
the accretion disk fills closed equipotentials. There is a critical (last) closed equipotential1.
Oscillations of such a critical torus are responsible for QPOs emission according to the Cusp
torus model (CT model). Different QPOs are excited by oscillations of the torus on different
central radial coordinates (r0).

Such a torus can oscillate in different modes. The CT model assumes that one of the QPOs
frequencies corresponds to a Keplerian frequency at the torus centre2. The second frequency

1 The situation is similar to Roche’s lobe in the theory of binary stars.
2 As you can see, for example, in [92–94], the material in the torus centre orbits with the frequency of free test

particles.
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corresponds to the modified (by pressure correction) precession frequency of a free test particle
(see Figure 2.6). The CT model was proposed in paper [8] thatis included in the list of papers
in Chapter II. The expression for the lower QPO frequency is complicated. However, there is
no need to adopt a new parameter. The frequency is given by the features of the central the
compact object3.
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Figure 2.6. A Cusp torus model illustration. Left panel: Torus configuration. The black lines indicate
torus equipotentials. Closed torus always fills one of the closed equipotentials. The red colour indicates
the critical (maximal) closed torus. The smallest torus, which is marked by green colour, is the torus
with which work models described in the last Chapter 2.3. A neutron star surface is chosen randomly
but appropriately. Middle and right panel: Explanation of CT model predictions. Every couple of QPO
frequencies correspond to oscillation frequencies of a torus on some radial coordinate which filled critical
closed equipotential. In the middle panel, there are tori for different central radial coordinate r0. In the
right panel, there are corresponding QPO frequencies predicted by the CT model.

2.5. One-parameter and two-parametric relation

Abramowicz and his colaborators noted in 2005 ([95, 96]) that parameters a, b resulting from
fitting of QPOs of six LMXB’s by the linear relation

νU = aνL +b (2.7)

are corellated and that the quality of the fits is quite good. For the rest of the eight sources it
was done in [9]. It led to an idea, that there should be a good fitting model of QPOs with just
one parameter. In [4] we find out that fitting the source 4U 1636-53 by the relation

νL = νU

(
1−0.8

√
1− (νU/ν0)

2/3
)
, (2.8)

3 In Schwarzschild geometry, it is just mass of the compact object.
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gives good results. In the formula νISCO = 1
63/2

c3

2πG
1

M , is the orbital frequency of a free test
particle on the innermost stable circular orbit. The fenomenological model turns out to be
suitable also for some other sources (see [9]). For the purposes of this work, we will call it a
one-parameter relation.

Physical meaning of the one-parameter relation will be clear if we will look at the RP model
within the Schwarzschild geometry with the radial epicyclic frequency modified by a factor of
0.8 with respect to the epicyclic frequency of free test particles

νU = νK =
1

r3/2
c3

2πG
1

M
,⇒ r =

(
1

νU

c3

2πG
1

M

)2/3

(2.9)

νL = νK−0.8νR =
1

r3/2
c3

2πG
1

M

(
1−0.8

√
1− 6

r

)

= νU

(
1−0.8

√
1− (νU/ν0)

2/3
)
. (2.10)

Modification of the radial epicyclic frequency can be produced either by the influence of
magnetic field or something not yet known.

As we can see in [9], for five sources we do not have good fits for this one-parameter relation.
It leads to the idea of introducing some a new parameter, lets call it B, which will express the
modification of the radial epicyclic frequency with respect to the epicyclic frequency of a free
test particle. We will call this new relation the two-parametric relation

νL = νU

(
1−B

√
1− (νU/ν0)

2/3
)
. (2.11)

2.6. Models modi�cations

We should mention a few modifications of the above-described models:

The Total precession model (TP model) was created by [97]. The model connect the lower
and the upper QPO frequencies to the total precession frequency (νL = νΘ−νR) and the vertical
epicyclic frequency (νU = νΘ).

The TP1 model is a modification of the TP model. It connects the lower QPO frequency to total
precession frequency (νL = νΘ−νR) and the upper to the Keplerian frequency (νU = νK).

The TPB model is another modification of the TP model. It connects the lower frequency to
the total precession frequency (νL = νΘ−νR) and the upper to the sum of the vertical and the
radial epicyclic frequency, νU = νΘ +νR.
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2.7. Resonant switch model

The Resonant switch model (RS model) was introduced in the series of works [5, 70]. It assumes
that a pair of the oscillation modes (corresponding to a model of QPOs described above) switches
to a different pair due to non-linear resonant phenomena at some resonant point. In other words,
QPOs generation is explained by the combination of two models. This model has so far been
used for fitting the data of 4U 1636-53 (see [5, 6, 70]).

2.8. Summary

Summary of the models mentioned above and frequency identifications can be seen in Table
2.1.

Table 2.1. The models summary. The list of models is completed with the corresponding frequency
identification and references.

Model νL νU Ref. Model νL νU Ref.

RP ΩK−ωR ΩK [76–80] TD ΩK ΩK +ωR [68, 81, 82]
WD 2 (ΩK−ωR) 2ΩK−ωR [85–87] ER ωR ωΘ [59, 64, 83, 84]
RP1 ΩK−ωR ωΘ [67] RP2 ΩK−ωr 2ΩK−ΩΘ [88, 89]
CT νr,m=−1 ΩK [8] one-par. see eq. (2.8) [9]
two-par. see eq. (2.11) [9] TP ωΘ−ωR ωΘ [97]
TP1 ωΘ−ωR ωΘ [97] TPB ωΘ−ωR ωΘ +ωR [97]



Chapter 3

QPOs in low mass X-ray binaries and compact

object parameters estimations

The last chapter is devoted to basic information about selected orbital models of QPOs. Some
of the papers attached to this thesis ([4–9, 15]) have one thing in common - an effort to obtain
information about compact objects by applying the models on the observed data.

In what follows, I will focus on the topics discussed in the following papers:

• Mass-Angular-momentum Relations Implied by Models of Twin Peak Quasi-periodic Os-
cillations [4] - In [89] authors find out that fitting QPO data from a group of sources with
low QPO frequencies by RP model in Kerr geometry leads to a relation between mass and
spin rather than a specific combination of these parameters. In our paper [4] this finding is
also expanded to sources with high QPO frequencies and other models. We also derived a
relationship between the upper and lower QPO frequencies in RP (and TD) models. In this
article, we have shown how to get a specific combination of mass and spin if we consider
the NS equations of state. Last but not least, we discussed how much the RP model would
have to be modified to fit the QPO data of high-frequency sources well.

• Test of the Resonant Switch Model by Fitting the Data of Twin-Peak QPOs in the Atoll
Source 4U 1636-53 [5] - This article is similar to [4] but this time, we used the resonant
switch model described in 2.7. In the resonant switch model, we get a combination of mass
and spin instead of a relation between these parameters.

• Equations of State in the Hartle-Thorne Model of Neutron Stars Selecting Acceptable Vari-
ants of the Resonant Switch Model of Twin QPOs in the Atoll Source 4U 1636-53 [6] - In
this article, there are results of [5] compared with predictions of NS equations of states.

• Twin peak quasi-periodic oscillations as signature of oscillating cusp torus [8] - the Casp
torus model was proposed in the article (see Section 2.4).

• Constraining Models of Twin-Peak Quasi-periodic Oscillations with Realistic Neutron Star
Equations of State [7] - It is another extension of the article [4]. This time we are considering
the NS equations of states. In this article, we work in the Hartle-Thorne geometry. We use

19
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the fact that the rotational frequency of NS in 4U 1636-53 is known from independent
observations. We verify which combinations of an equation of state and QPO models are
compatible.

• A one-parameter formula relating the frequencies of twin-peak quasi-periodic oscillation [9]
- This article finds and investigates a simple relation with one parameter which reproduces
the correlations between QPO frequencies of several sources (see Section 2.5 of this thesis).
The article also shows that if we add another parameter to the relation, the relation interprets
all fourteen examined resources well. We discuss the physical meaning of the parameters
and deal with the proofs of the orbital origin of the QPOs.

• Simple analytic formula relating the mass and spin of accreting compact objects to their
rapid X-ray variability [15] The paper was just submitted to The Astrophysical Journal. A
well-fitting one-parameter relation derived in [9] was found as a good approximation of the
CT model in the Schwarzschild geometry. In this article, we found something similar but
within the Kerr and the Hartle-Thorne geometry. This relation can be helpful for the fast
estimation of NS parameters.

In this chapter, we will focus on the estimations of parameters of the NS, which are present
in twelve LMXB’s. Figure 3.1 shows a map of the X-ray sky with a position of all the sources.
Example power spectra of the sources can be seen in Figure 3.2.

SCO X1

4U 1608-52

4U 1735-44

4U 0614+09

GX 340+0

4U 1636-53

4U 1915-05

GX 17+2

Cir X-1

4U 1728-34

4U 1820-30

GX 5-1

Figure 3.1. The X-ray sky with source positions. The sky map comes from [98].
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Figure 3.2. Examples of the power spectra. All information can be found in papers [23, 26, 30, 33, 36,
39, 43, 99–102] from which this plot is taken.

In the above mentioned articles, we, among other things, performed an analysis of the
observational data leading to the estimation of parameters of compact objects. I have always
had concerns whether our results were not affected by the fact that we only took into account
a limited amount of data. I wanted to perform the same analysis for all the twelve sources as
was done in the papers, but this time utilizing all the data reported by different authors. The
authors in general use different procedures for obtaining the data using different parts of the
light curves, so it could be interesting to see how this influences the parameters estimations.

However, finding all the available data (i.e. going through thousands of papers) and analysing



22 Chapter 3. LMXBS QPO parameters estimations

them seemed too time-consuming for a regular article. At the same time, it was clear that in the
best case (i.e. when the conclusion is that there is no distortion), this work would not lead to
any new result.

The opportunity to analyse such a huge number of data came to me while working on this
dissertation. Comparison between the data commonly used by us in the papers [4–9] and all
data reported over the years by various authors is displayed in Figure 3.3.
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Figure 3.3. Frequencies of the QPOs found in the power spectra. Left: the data we use in papers [4–9].
Right: data avaliable in the literature.

Now, I use models described in Chapter 2 for parameters estimation and compare them across
data from different authors. In part, such an analysis was performed by other authors whose list
can be found in our publications [4–9, 15]. Here, I only mention publications [25, 103].

In Figures (3.17 - 3.16), we can see the best fits made for all the models and data.
Let us now talk about the quality of the fits. It can be seen from the right panel of Figure

3.3 that a ”simple” relation should be able to well approximate the dependency of νU on νL.
However, reduced χ2 will be high for all simple models (because of scattering of the points).

Therefore, let us explore properties of another quantity ε defined as

ε = ((νL−νL,theoretical)
2 +(νU −νU,theoretical)

2)1/2. (3.1)

In Equation 3.1, νL,νU are frequencies of the QPO peaks (a point in the right panel in Figure 3.3)
and [νL,theoretical, νU,theoretical] are coordinates of the nearest point on the curve corresponding to
the best fit of the model. If we consider a given model to be potentially good, ε should be a
random variable (the points should by randomly scatterred arround the curve). The correlation
between ε and νL is on the following lines quantified by the Pearson’s correlation coefficient p
([104]).

First, I focus on models that were only taken from the literature (i.e. the linear, quadratic,
square-root, RP, TD and WD models - see Section 3.1). Later, I will use our own proposed
models (i.e., the one-parameter and two-parametric relations, and the CT model - see Section
3.2.).
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Figure 3.6. The same as in 3.4 but for 4U 1915-05.
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Figure 3.7. The same as in 3.4 but for 4U 1636-53 - the first part.
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Figure 3.8. The same as in 3.4 but for 4U 1636-53 - the second part.
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Figure 3.9. The same as in 3.4 but for 4U 1728-34 - the first part.
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Figure 3.10. The same as in 3.4 but for 4U 1728-34 - the second part.
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Figure 3.11. The same as in 3.4 but for 4U 1735-44.
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Figure 3.12. The same as in 3.4 but for 4U 1820-30.

Figure 3.13. The same as in 3.4 but for Cir X-1.

Figure 3.14. The same as in 3.4 but for GX 5-1.
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Figure 3.15. The same as in 3.4 but for SCO X-1.
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Figure 3.16. The same as in 3.4 but for GX 17-2.

Figure 3.17. The same as in 3.4 GX 340+0.
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3.1. Models adopted from the literature

In this subsection, I will assume the Schwarzschild geometry. One can see in papers [4, 7] that,
in general, the transition to Kerr or Hartle-Thorne geometry does not imply any improvement
of the fit.

In Table 3.1, I present the best-fit parameters of the selected models from the previous
chapter applied to the data obtained by various authors. I used the Module kmpfit from the
Kapteyn Package [105]. In papers [4–8, 13, 15, 48, 49], we used data sets with errors. This
information, however, is not always present in all the papers from which the data were taken.
For that reason, we do not use errors here.

For the sake of interest, Figures 3.18 - 3.33 show histograms of ε (see Equation 3.1) for all
sources and models. The horizontal and vertical axes show the value of ε and the frequencies,
respectively. Figures 3.24 - 3.35 illustrate the dependency of ε on νL.

Table 3.1. Best fit parameters for models given in Chapter 2 and different QPO sources. The meaning
of the A,B,M parameters is given in Chapter 2. The p parameter is Pearson’s correlation coefficient (the
correlation between ε and νL). If p < 0.3, the value is highlighted in red colour. Lines named after given
source are results based on data used in our papers [4–8, 13, 15, 48, 49] (their referencies can be found
in Table 1.2). The rest of lines are named according to the authors who were reported the data.

Linear model Quadratic model Square-root model RP model T D model WD model
B, A, χ2, p B, A, χ2, p B, Ax10−4, χ2, p M, χ2, p M, χ2, p M, χ2, p

4U 0614+52 262±46,1.08±0.07,65 0.260 625±2,8±0.5,70 0.275 −469±91,56±4,64 0.271 1.92±0.02,427 , 0.926 2.22±0.02,108 0.580 2.26±0.02,71 0.423
[a] 337±30,0.98±0.05,114 0.000 646±12,7.6±0.3,70 0.000 −293±72,50±3,154 0.001 1.93±0.01,244, 0.875 2.12±0.04,222, −0.184 2.18±0.03,130 0.095
[b] 307±24,1.02±0.04,361 , 0.000 525±27,10.3±0.7,1131 , 0.031 −211±59,46±2,492, −0.049 1.9±0.01,952, 0.650 2.15±0.04,740, -0.387 2.21±0.04,426, −0.236
[c] 302±23,1.03±0.03,77 −0.008 651±11,7.4±0.3,73 −0.008 −405±49,54±2,85 0.001 1.93±0.01,339, 0.943 2.15±0.02,163, 0.513 2.22±0.02,86, 0.299

4U 1608-52 476±33,0.73±0.05,190 −0.200 734±2,5.0±0.4,283 −0.175 −46±60,40±2,299 −0.115 1.94±0.01,266 0.839 2.26±0.02,305 0.291 2.45±0.04,422 -0.615
[d] 377±72,0.89±0.11,311 −0.000 660±39,6.9±0.9,348 −0.000 −194±140,45±5,37 0.000 1.95±0.03,519 0.715 2.3±0.04,251 −0.185 2.33±0.06,290 −0.299
[e] 341±37,0.93±0.0659 −0.000 638±29,7.2±0.7144 0.001 −261±58,47±2161 −0.001 1.99±0.07847 0.990 2.31±0.0243 0.822 2.41±0.0338 -0.643

4U 1636-53 504±15,0.72±0.02110 −0.036 1132±12,11.4±295 −0.049 −30±30,39.3±1.1102 −0.084 1.88±0.01362 0.841 2.16±0.01160 −0.204 2.37±0.05537 -0.705
[f] 309±70,1.00±0.11298 −0.000 622±37,7.9±0.4325 0.005 −322±139,50±6295 0.000 1.97±0.05822 0.842 2.24±0.05282 0.034 2.29±0.06254 −0.042
[g] 362±30,0.87±0.04326 0.000 669±23,6.0±0.4638 0.014 −267±49,47±2218 −0.005 1.84±0.011867 0.951 2.20±0.02746 0.680 2.55±0.04250 −0.242
[h] 300±61,1.00±0.09,195 0.000 643±28,7.2±0.6,167 0.002 −397±135,53±5,233 0.002 1.92±0.01549 0.931 2.18±0.07565 0.584 2.34±0.06179 0.250
[i] 524±33,0.70±0.04,271 −0.000 776±20,4.8±0.4,381 0.020 19±60,38±2,229 −0.229 1.83±0.01,289 0.606 2.20±0.01,194 −0.295 2.33±0.05,571 -0.755
[j] 475±72,0.74±0.08,16 0.001 801±35,4.2±0.5,15 −0.003 −1.78±146,44±5,16 0.002 1.81±0.01,63 0.879 2.20±0.01,206 0.877 2.58±0.02,17 -0.667
[k] 494±120,0.75±0.17,154 −0.000 755±65,5.4±1.3,174 0.003 −29±232,40±9,144 −0.002 1.84±0.02,126 0.543 2.22±0.03,102 -0.396 2.24±0.06,166 -0.646
[l] −575±715,1.93±0.79,51 −0.000 292±365,10.8±4,51 −0.004 −2309±1475,116±47,51 0.003 1.72±0.01,129 0.708 2.10±0.01,157 0.520 2.41±0.02,75 -0.625

4U 1728-34 304±43,1.06±0.06,47 0.362 702±20,7.0±0.4,45 0.312 −496±90,58±3,50 0.411 1.72±0.02,358 0.930 2.02±0.02,97 0.493 2.05±0.01,54 0.266
[m] 500±41,0.78±0.05,123 0.000 796±24,5.2±0.4,157 0.005 −95±77,43±3,108 −0.003 1.73±0.01,209 0.766 2.07±0.01,68 −0.076 2.11±0.03,182 -0.747
[n] 296±48,1.05±0.07,556 −0.000 545±52,9.5±1.1,1814 −0.018 −264±63,49±2,258 0.008 1.77±0.04,1343 0.926 2.07±0.03,253 -0.454 2.13±0.05,292 −0.175
[o] 342±47,0.95±0.07,273 −0.000 660±23,6.9±0.5,240 −0.008 −309±101,50±4,314 −0.003 1.90±0.01,1202 0.907 2.15±0.04,432 0.258 2.29±0.05,259 −0.155
[p] 343±44,0.95±0.06,240 −0.000 660±22,6.9±0.4,221 −0.008 −303±93,50±4,274 −0.003 1.91±0.01,1166 0.917 2.15±0.04,365 0.302 2.29±0.05,227 −0.261
[q] 441±49,0.86±0.07,231 −0.000 744±31,6.0±0.6,337 −0.003 −175±88,46±3,190 −0.000 1.74±0.03,611 0.884 2.05±0.02,117 −0.281 2.10±0.05,270 −0.283

4U 1735-44 371±44,0.90±0.06,25 -0.432 717±21,5.8±0.3,23 -0.346 −322±91,50±3,26 -0.476 1.83±0.02,211 0.656 2.22±0.02,116 0.314 2.38±0.01,22 0.972
[r] 659±16,0.50±0.02,2 0.001 830±8,3.7±0.2,2 0.002 315±31,26±1,2 0.001 1.88±0.01,23 -0.979 2.26±0.06,197 -0.998 1.66±0.09,280 -1.000

4U 1820-30 334±53,0.91±0.07,55 −0.024 678±27,6.0±0.5,55 0.629 −356±106,50±0.4,56 −0.043 1.93±0.01,162 0.807 2.35±0.01,151 0.756 2.57±0.02,53 -0.454
[s] 182±117,1.12±0.16,63 0.000 586±6,7.8±1.2,74 0.001 −374±224,51±8,59 −0.000 1.93±0.33,403 0.944 2.36±0.04,256 0.851 2.55±0.04,77 0.472

4U 1915-05 265±16,1.13±0.03,50 -0.396 457±31,13±1.0,561 -0.364 −183±26,46±1,34 0.269 1.85±0.05,655 0.969 2.00±0.16,832 -0.996 2.00±0.16,832 -0.963
SCO X-1 368±7,0.73±0.01,70 -0.304 722±5,5.2±0.1,43 -0.399 −44±10,39±1,10 −0.224 2.0±0.01,170 0.983 2.47±0.02,170,49 0.165 1.82±0.01,173 -0.714

[t] 441±21,0.77±0.03,65 −0.000 698±16,5.6±0.3,149 0.012 −81±32,40±1,37 −0.007 1.97±0.02,314 0.979 2.32±0.01,40 0.030 2.48±0.01,219 -0.879
[u] 430±5,0.79±0.01,15 0.487 695±5,5.8±0.1,46 0.587 −105±8,41±1,8 0.312 1.96±0.01,257 0.984 2.33±0.01,46 -0.648 2.46±0.02,115 -0.435
[v] 646±253,0.52±0.31,81 -0.338 858±126,3.2±1.9,81 0.001 221±507,30±18,81 −0.000 1.90±0.01,61 0.069 2.31±0.01,70 0.400 2.63±0.04,76 −0.868

Cir X-1 126±51,2.15±0.40,454 −0.179 204±38,122.8±28.3,549 −0.254 −85±82,43±7,367 −0.102 2.06±0.13,345 0.325 — 1.29±0.12,357 0.007
GX5-1 378±13,0.84±0.04,287 −0.143 503±14,12±1,920 −0.020 100±18,31±1,143 −0.122 2.16±0.03,259 -0.763 1.62±0.50,4133 -0.969 2.04±0.12,1538 -0.951
GX 17+2 355±37,0.88±0.06,176 −0.140 625±24,6.9±0.6,281 −0.262 −194±65,44±3,135 −0.110 2.07±0.04,645 0.932 2.43±0.02,82 0.281 2.56±0.05,169 −0.232

[w] 300±20,0.99±0.03,43 0.000 600±12,7.9±0.3,59 −0.001 −313±44,49±2,54 −0.002 2.04±0.01,781 0.973 2.30±0.02,130 0.216 2.40±0.02,42 0.069
GX340+0 378±32,0.89±0.09,598 0.172 522±24,13±2,1049 0.941 72±55,33±3,444 0.081 2.08±0.05,419 -0.351 0.68±0.65,3169 -0.889 1.85±0.13,1211 -0.764
Average |p| 0.100 0.136 0.084 0.808 0.469 0.492

[a] - Ford et al. (1997), [b] - van Straaten et al. (2000), [c] - Boutelier et al. (2009), [d] - du Buisson et al. (2019), [e] - van Straaten et al. (2003), [f] - van Doesburgh & van der Klis (2017),
[g] - Lin et al. (2011), [h] - Altamirano et al. (2008), [i] - Barret et al. (2005), [j] - Di Salvo et al. (2003), [k] - Jonker et al. (2002), [l] - Wijnands et al. (1997), [m] - Barret et al. (2006),
[n] - Migliari et al. (2003), [o] - van Straaten et al. (2002), [p] - Di Salvo et al. (2001) , [q] Mendez & van der Klis (1999), [r] - Ford et al. (1998), [s] - Barret et al. (2006), [t] - Lin et al. (2011),
[u] - Mendez van der Klis (2000), [v] - van der Klis et al. (1996), [w] - Wijnands et al. (1997)
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Figure 3.18. Histograms of ε for linear relation and different sources. References: 1-[43], 2-[44], 3 -
[45], 4 - [22], 5-[23], 6 [24] , 7-[25] , 8-[26], 9-[19], 10-[27], 11-[28], 12-[29], 13-[38], 14-[39], 15-[40],
16-[41], 17-[42], 18-[30], 19-[38], 20-[25], 21-[35], 22-[36], 23-[33]. The black column corresponds to
data which we originally used in papers [4–8, 13, 48, 49] and their referencies can be found in Table 1.2.

0

2

4

6

8

10

12

14

-100 -50 0 50 100
0

1

2

3

4

5

-40 -30 -20 -10 0 10 20 30 40
0

1

2

3

4

5

6

7

-40 -20 0 20 40
0

1

2

3

4

5

6

7

-60 -40 -20 0 20 40 60

0

1

2

-10 -5 0 5 10
0

1

2

3

4

5

6

7

-100 -50 0 50 100
0

1

2

-40 -30 -20 -10 0 10 20 30 40
0

2

4

6

8

10

12

14

-30 -20 -10 0 10 20 30

0

1

2

3

4

5

-60 -40 -20 0 20 40 60
0

1

2

3

4

5

6

-60 -40 -20 0 20 40 60
0

1

2

3

-30 -20 -10 0 10 20 30
0

1

2

-60 -40 -20 0 20 40 60

4
5

6
7
8
9

10
11

13
14
15

16
17

18 19 20
21
22

4U 0614+09 4U 1608-52 4U 1636-53 4U 1728-34

4U 1735-44 4U 1820-30 4U 1915-05 Sco X-1

Cir X-1 GX 5-1 GX 17+2 GX 340+0

12

1
2
3

e [Hz] e [Hz] e [Hz]

e [Hz]e [Hz]

e [Hz]

e [Hz] e [Hz]

e [Hz] e [Hz]e [Hz]e [Hz]

Figure 3.19. The same as 3.18 but for the quadratic relation.
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Figure 3.20. The same as 3.18 but for the square-root relation.
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Figure 3.21. The same as 3.18 but for the RP model.
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Figure 3.22. The same as 3.18 but for the TD model.
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Figure 3.23. The same as 3.18 but for the WD model.
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Figure 3.24. Dependency of ε on νL for the linear relation and different sources.
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Figure 3.25. The same as 3.24 but for the quadratic relation.
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Figure 3.26. The same as 3.24 but for the square-root relation.
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Figure 3.27. The same as 3.24 but for the RP model.
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Figure 3.28. The same as 3.24 but for the WD model.
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Figure 3.29. The same as 3.24 but for the TD model.
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3.2. Our models

Here, I will focus on three models that were proposed by us in our publications. These are the
Cusp torus model (see Section 2.4), and the one-parameter and two-parametric relations (see
Section 2.5). In the left panel of Figure 3.30, one can see comparison between the one-parameter
relation and the CT model in the Schwarzschild geometry. The one-parameter relation is a perfect
approximation of the CT model. Therefore, we will no longer work with the CT model, but
only with this approximation1. In the first two columns of Table 3.2, the best-fit parameters are
obtained by fitting the observed data by the one-parameter and two-parametric relations.

So far, we have only worked with the one-parameter relation (CT model) in the Schwarzschild
geometry. During the writing of this dissertation, we managed to generalise the relation for Kerr
and Hartle-Thorne geometry (see article [15]). In the right panels of Figure 3.30, one can see a
comparison between the CT model in the HT geometry and the new one-parameter relation

νL = νU

[
1− (0.8−0.2 j)

√
1+8 jV0−6V

2/3
0 − (

1
3
(8 j2−17q))V 4/3

0

]
, (3.2)

where V0 ≡ νU/ν0
63/2− jνU/ν0

,ν0 = 2198M�
M .
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Figure 3.30. Comparison between the CT model (numerical calculations) and the one-parameter rela-
tion. Left: the Schwarzschild geometry. Right: the Hartle-Thorne geometry.

For most sources, this relation may be used as a very good approximation of the CT model.
As usual (see [7]), the transition to HT geometry does not imply a significant improvement in
the quality of the fit. Instead of the specific combination of mass M, quadrupole moment q, and
spin j corresponding to the best fit, we obtain the dependence of one quantity on the others. You
can see such dependence in Figure 3.30 for 4U 1636-53 and 4U 1728-34. For all the sources
investigated in this thesis, the results are similar in the sense that all curves of the ”best” mass
as a function of q for all j intersect in approximately one place for a quadrupole moment around

1 Here, it is worth mentioning that, in the case of the CT model, there is a lower limit on the value of frequencies,
while there is no such thing for the one-parameter relation (see [8]).
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Table 3.2. Similar to 3.1 but for for one-parameter and two-parametric relations.

one-par. rel. two-par. rel. one-par. HT one-par. rel. two-par. rel. one-par. HT
M, p M,B, p Mass M, p M,B, p Mass

4U 0614+52 1.72±0.02 0.807 1.29±0.14,0.58±0.05 0.229 1.78 4U 1735-44 1.71±0.01 0.145 1.50±0.08,0.63±0.05 -0.497 1.75
[a] 0.70±0.02 0.597 1.47±0.1,0.68±0.4 −0.066 1.75 [r] 1.71±0.03 -0.996 1.95±0.01,1.16±0.04 0.017 1.78
[b] 1.7±0.02, 0.183 1.56±0.08,1.7±0.4, −0.168 1.75 4U 1820-30 1.81±0.01 0.605 1.55±0.11,0.59±0.06 −0.044 1.9
[c] 1.69±0.02 , 0.820 1.35±0.07,0.61±0.03, −0.024 1.75 [s] 1.81±0.03 0.884 1.53±0.44,0.58±0.11 0.031 1.9

4U 1608-52 1.79±0.02 0.098 1.78±0.04,0.80±0.04 0.018 1.84 4U 1915-05 1.61±0.02 -0.414 1.62±0.05,0.80±0.03 0.285 1.66
[d] 1.77±0.03, 0.263 1.68±0.14,0.74±0.09 0.019 1.84 SCO X-1 1.82±0.01 0.034 1.82±0.01,0.80±0.01 −0.104 1.87
[e] 1.78±0.03 0.933 1.63±0.06,0.68±0.03 0.028 1.87 [t] 1.82±0.01 0.316 1.80±0.02,0.79±0.02 0.062 1.87

4U 1636-53 1.71±0.01 −0.155 1.71±0.02,0.81±0.02 −0.155 1.78 [u] 1.80±0.01 0.626 1.78±0.01,0.77±0.01 0.027 1.87
[f] 1.75±0.04 0.554 1.51±0.19,0.66±0.08 −0.002 1.81 [v] 1.80±0.01 −0.155 1.87±0.18,0.92±0.42 −0.015 1.87
[g] 1.77±0.02 0.827 1.63±0.04,0.65±0.03 0.071 1.81 Cir X-1 0.80±0.15 -0.330 1.82±0.6,0.96±0.10 −0.100 0.74
[h] 1.74±0.05 0.815 1.40±0.18,0.60±0.07 −0.049 1.81 GX5-1 1.75±0.08 -0.951 2.31±0.03,1.11±0.02 −0.002 1.81
[i] 1.7±0.01 -0.315 1.75±0.03,0.86±0.04 0.028 1.75 GX 17+2 1.89±0.02 0.601 1.78±0.07,0.72±0.04 0.011 1.96
[j] 1.73±0.01 0.663 1.62±0.08,0.65±0.08 −0.012 1.81 [w] 1.79±0.03 0.881 1.56±0.06,0.65±0.03 −0.042 1.87
[k] 1.69±0.02 −0.178 1.74±0.15,0.85±0.16 0.028 1.75 GX 340+0 1.61±0.10 -0.771 2.21±0.10,1.08±0.06 0.101 1.66
[l] 1.64±0.01 0.672 0±0.02,0.23±0.37 0.336 1.72

4U 1728-34 1.55±0.01 0.820 1.19±0.10,0.58±0.04 0.414 1.63
[m] 1.58±0.01 0.036 1.58±0.05,0.80±0.05 0.037 1.63
[n] 1.60±0.02 0.590 1.50±0.060.72±0.04 0.081 1.66
[o] 1.69±0.04 0.662 1.49±0.11,0.65±0.06 −0.038 1.72
[p] 1.69±0.04 0.676 1.50±0.10,0.66±0.06 −0.034 1.72
[q] 1.58±0.02 0.321 1.54±0.06,0.76±0.05 0.047 1.66

Average |p| 0.534 0.092

[a] - Ford et al. (1997), [b] - van Straaten et al. (2000), [c] - Boutelier et al. (2009), [d] - du Buisson et al. (2019), [e] - van Straaten et al. (2003),
[f] - van Doesburgh & van der Klis (2017), [g] - Lin et al. (2011), [h] - Altamirano et al. (2008), [i] - Barret et al. (2005), [j] - Di Salvo et al. (2003), [k] - Jonker et al. (2002),
[l] - Wijnands et al. (1997), [m] - Barret et al. (2006), [n] - Migliari et al. (2003), [o] - van Straaten et al. (2002), [p] - Di Salvo et al. (2001) , [q] Mendez & van der Klis (1999),
[r] - Ford et al. (1998), [s] - Barret et al. (2006), [t] - Lin et al. (2011), [u] - Mendez van der Klis (2000), [v] - van der Klis et al. (1996), [w] - Wijnands et al. (1997)

3-4 j2 (see Figure 3.31). In the third column of Table 3.2, we therefore state the value of this
mass (the mass for which the curves intersect)2.

In Figures 3.32 and 3.33, there are histograms of ε (Equation 3.1). Figures 3.34 and 3.35
show the dependency of ε on νL.
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Figure 3.31. Best fits of the data of the 4U 1636-53 and 4U 1728-34 atoll sources found for the RP and
CT models and a particular choice of the NS spin and oblateness. For the other choices within the range
of parameters, j ∈ [0, 0.4] and q/ j2 ∈ [1, 10], the resulting fits are similar. The other atoll sources reveal
a fully analogic behaviour.

2 To obtain this mass, we fit the resulting plane of the best combinations of mass and spins for a given q by the
relation: νL = a∗ j ∗q+b∗ j+mass, where a,b are constants.
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Figure 3.32. The same as in 3.18 but for the one-parameter relation 1.2
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Figure 3.33. The same as 3.18 but for the two-parametric relation.
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Figure 3.34. The same as 3.24 but for the one-parameter relation.
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Figure 3.35. The same as 3.24 but for the two-pamametric relation.
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3.3. Do parameters change between data from di�erent authors?

It can be seen from Tables 3.1 and 3.2 that, in general, models with two parameters (the
square-root, two-parametric, linear, and quadratic models) give a value of the correlation
parameter smaller than 0.3. In comparison, models based on one parameter (the TD, WD,
one-parameter, and RP models) give higher values.

Let us investigate whether the parameters change when we switch between data from
different authors. From Figures 3.4 - 3.17, we can see that data points we used in our works
[4–7, 9, 15? ] in general cover interval in νL large enough to get a precise information. In
other words, other authors (than those whose data we used in our papers) did not report data that
would cover a larger range in νL, which could fundamentally change the values of the predicted
parameters. Therefore, even though the predictions are slightly different, we can continue to
use the same data.

Figure 3.36 displays the dependency of the A parameter on the B parameter for the linear,
quadratic and the square-root relation. Although the values of the parameters change among
different authors, typically (with minor exceptions), the A parameter is dependent on the B
parameter. The bottom panels of the figure display masses obtained from the RP, T D, and WD
models implied by different authors and sources.
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Figure 3.37 shows similiar dependencies as 3.36 but this time for our models (one-parameter
and two-parametric relations).
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Figure 3.37. The same as on 3.36 but for our models.



Chapter 4

Oscillating torus

In the paper Twin peak high-frequency quasi-periodic oscillations as a spectral imprint of dual
oscillation modes of accretion tori [49], we deal with the possibility that an oscillating torus is
responsible for the QPOs. We explore the influence of the inclination of the observer and the
spin of the compact object on the resulting power spectrum and the Kα iron lines profiles of a
torus oscillating in radial and vertical directions. The article is a continuation of the work of
other authors, namely [63, 90, 93, 94, 106–110].

At this point, I will focus on our results. The already published work will thus be supple-
mented by new results obtained for the purpose of this thesis. This will show the directions of
our future work.

4.1. Torus con�guration

The article considered an axially symmetric torus made by a perfect polytropic fluid with
constant specific angular momentum. The material orbits the black hole in a purely azimuthal
direction, and the radial extent of the torus is very small compared to its central radius. An
illustration of the equilibrium state of such a torus can be seen in Figure 4.1.

r
0

Figure 4.1. Equilibrium configuration. The cross-section of the torus is almost elliptical. Semi-major
and semi-minor axes are roughly inversely proportional to the test particle’s radial and vertical epicyclic
frequencies.
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The surface of such a torus is given by the relation (see, for example [49, 93, 94])

p0

ρ0

(
1−ω

2
r0(x)

2−ω
2
θ0(y)

2)= 0, (4.1)

where p0 and ρ0 are the pressure and density defined at the torus center. The x,y coordinates
are connected to the Boyer-Lindquist coordinates by

x2 =
1
β
|grr0|

(r− r0)
2

r2
0

, (4.2)

y2 =
1
β
|gθθ0|

(
π

2 −θ
)2

r2
0

. (4.3)

Furthermore, r0 is the central radial position of the equilibrium torus and grr0, gθθ0 are the
metric tensor components in the Kerr geometry defined at the torus centre. The β parameter
describes the torus thickness, ωr,ωθ are the radial and vertical epicyclic frequencies given in
the units of the orbital frequency Ω0 of a free test particle.

The torus oscillates in the radial and vertical directions. The surface of the oscillating torus
is given by the equation (for more information see [49, 93, 94]):

1−ω
2
r0(x+δx)2−ω

2
θ0(y+δy)2 = 0, (4.4)

where δx and δy are given by:

δx = −Ar cos(mrϕ− (ωr +mr)Ω0t)
2ω

2
r

, (4.5)

δy = −Aθ cos(mθ ϕ− (ωθ +mθ )Ω0t)
2ω

2
θ

. (4.6)

The free Ar,Aθ parameters are the oscillation amplitudes. The mr,mθ integers are the azimuthal
numbers.

In the paper, we consider two configurations of oscillations:

• The first configuration with zero azimuthal numbers (mr = 0, mθ = 0). This configuration
corresponds to the ER model from Chapter 2.

• The second configuration with non-zero azimuthal numbers (mr =−1, mθ =−2). This is
the so-called RP2 model from Chapter 2.

The centre of the torus r0 is chosen such that the radial and the vertical oscillation frequencies
are in 2 to 3 ratio. The β parameter providing information about the torus thickness is chosen
in such a way that the torus radial extension (measured by an observer at infinity) is r0/10. The
amplitudes of the oscillations are chosen such that Ar,θ = ωr,θ .
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In Figure 4.1 you can see how the individual oscillations look like.

r0

Top view

Side view

r0

Top view

Side view

The first configuration

The second configuration

2W wK -
q

2W wK -
q

W wK r- W wK r-

Side view - cross section

Side view - cross section

Figure 4.2. Illustration of two configurations that we consider here. The top line corresponds to the
first (axially symmetric) oscillation configuration, and the bottom line shows the second (non-axially
symmetric) configuration.

4.2. Oscillating tori as seen by a distant observer

I worked on an article under the supervision of Dr. Pavel Bakala (see Figure 4.3). In the
article, we worked with a modified version of the LSDplus code ([49, 111]), one of Pavel’s most
important creations. Today, unfortunately, he is no longer among us, and at this point, I would
like to express my gratitude for everything we have achieved together and I have learned from
him. Without him, this dissertation might not have been completed.

In the paper, we implemented the above described torus into the relativistic ray-tracing
LSDplus code ([49, 111]. Figure 4.4 illustrates where a given part of the torus is displayed on
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the observer’s screen. The resulting oscillating tori as viewed by a distant observer can be seen
in Figures 4.5 and 4.6.

Figure 4.3. A tribute to Pavel Bakala.

4.2.1. Power spectra and Iron Kα line pro�les

We applied the fast Fourier transformation on the resulting light curves, and obtained the power
spectra.

In Figure 4.7, there are power spectra for different observer inclination angles, both config-
urations, and three different values of the black hole spin.

The first configuration leads to power spectra with the pair of dominant peaks corresponding
to frequencies of the radial and vertical oscillation modes, except for the case of very high or
very low observer inclinations, where higher harmonics are prominent.

The same is true also for the second configuration in the case of zero and a half spin. In
the case of high spin and the second configuration, there are dominant peaks in the power
spectrum corresponding to frequency of just the radial oscillation modes and their harmonics
for all inclinations. This is so because the torus is located in the ergosphere.

Furthermore, we assume that every point of the torus surface radiates with Lorentzian profile
with central energy E = 6400 eV. Along the photon path, a Lorentzian profile with a centre at
6400 eV is shifted due to the relativistic effects (like the Doppler shift or the gravitational
redshift, see Figure 4.8 ). Each pixel of the observer’s screen corresponds to a different spectral
line profile. These profiles are summed across all pixels.

Similar behaviour can be seen in the resulting Kα line profiles as in the case of the power
spectrum (see Figure 4.9).

Until now, we have dealt with already published results. Let us now look at something new.
In Figure 4.10, we can see profiles of the Kα lines constructed as above. This time, however,
a sphere is rotating at a certain angular velocity in the middle of the Keplerian disk. If we did
not consider the accretion disk, we would get similar results as here [112]. The space-time
is described by the Schwarzschild geometry, in which a spherically symmetric but generally
rotating star is inserted. So far, the configuration is too simple to discuss these results further.
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Figure 4.4. Illustration showing where each point is displayed on the observer’s screen. The curves do
not correspond to real photon trajectories.

Figure 4.5. Illustration of a torus oscillating in the first configuration as would be seen by a distant
observer. Each image was taken at a different time so that all twelve cover the entire period. The white
lines indicate the position of the torus at the initial time.

Figure 4.6. The same as in 4.5 but for the second configuration.
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Figure 4.7. Power density spectrum of an oscillating torus. The left column corresponds to the first
configuration. The right one is for the second configuration. The individual lines correspond to different
spin values of the black hole. The colours mark different inclinations (i).

Figure 4.8. Illustration of obtaining the profile of a Kα line measured by a distant observer. In a torus
local system, the Kα line has a Lorentz profile with a center value of 6400 eV.
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with the disks from Left block as seen by a distant observer.



Chapter 5

Summary and future prospects

During my study, I have collaborated on seventeen papers. Sixteen of them have already been
published ([4–9, 48, 113–120]) and one of them has been sent to the Astrophysical Journal
([15]).

5.1. QPO data and their �ts

From the above set of papers, I have selected eight whose results are briefly commented on
within this work. All of them are in some way related to the phenomenon of QPOs. Instead of
simply repeating what has been done in those individual papers, I have decided to do the work
I had been thinking about for a long time. Most of these publications deal with fitting of the
QPO data. We have always worked with a limited number of sources, models, and data. There
was a danger that if we took data obtained by other authors, we could obtain different results. I
decided to consider all the QPO data available in the literature and use the same procedure as
was used in our articles. I present my conclusions in Chapter 3 where I demonstrate that the
results reached by using data reported by various other authors are very similar to those obtained
by us in the past.

Another outcome of Chapter 3 is the collection of a large amount of the HF QPO data itself
(in fact, as much as was possible to collect at the time) that can be utilized in the future. I soon
intend to complete and publish a short paper providing all this data along with their references.

5.2. Interpretation of the variability

Furthermore, I attempted in this thesis to create a comparison between fits predicted by the
here considered models in a way different than usual. I conclude in Chapter 3 that the models
can be sorted according to the quality of the fits in the following way (from best to worst):
the square-root model, two-parameter relation, linear model, quadratic model, TD model, WD
model, one-parameter relation, and the RP model.

As follows from the findings of the submitted paper [15], the two-parametric relation can be
related to predictions of the CT model, whereas deviations of the B parameter from the value
of B = 0.8 can correspond to deviations of a real accretion flow from the simplified case of a

53



54 Chapter 5. Summary and future prospects

flow with constant angular momentum distribution. In the H-T spacetime, even for B = 0.8,
the CT model clearly provides better fits than the RP model while also implying realistic values
of the NS mass.

These findings strongly support the validity of the CT model. In this model, the lower QPO
frequency corresponds to the radial oscillation of the inner torus. The corrotation frequency
associated to the upper QPO can be related to instabilities of the flow that can grow for
some time but presumably does not survive due to the various stabilization effects [121–124].
Characteristic timescales of these processes are more than five orders of magnitude lower than the
typical integration time required to well identify the two peaks in the PDS from the Proportional
Counter Array on the board of the Rossi X-ray Timing Explorer ([125]). Both the considered
modes can form Lorentzian profiles in the resulting PDS [126]. From the very nature of these
modes it however follows that the radial mode has a much higher potential to produce narrow
peaks in PDS. This well corresponds with the documented high coherence of the lower QPO
[20, 38]. Taking into account all of the above, I suggest the CT model could represent a very
promising concept.

5.3. Correlated spectral and timing behaviour

In Chapter 4, I discuss the results of article [49]. The article analyzes the timing properties of
flux emitted from a fluid torus oscillating in the radial and vertical directions. The assumed
oscillatory configurations correspond to models listed in Chapter 2. I include a sketch of a new
preliminary result in Figure 4.10 showing a very simplified example of an iron line profile in the
spectra of radiation emitted from the configuration of a Keplerian disk and a rotating star. With a
little more effort, this incremental result itself could in the future help improve our investigations
of the NS X-ray spectra. The main reason I include it here is nevertheless related to my desire
of illustrating the potential of our codes for future investigations regarding oscillations of disk
structures in the innermost accretion regions and the implied correlated spectral and timing
behaviour of X-ray emissions from the vicinity of compacts objects.
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[42] MÉNDEZ, M. & VAN DER KLIS, M.: Precise Measurements of the Kilohertz Quasi-periodic
Oscillations in 4U 1728-34. The Astrophysical Journal Letters, 517(1), pp. L51–L54, May 1999,
astro-ph/9903303.

[43] FORD, E.; KAARET, P.; TAVANI, M.; BARRET, D.; BLOSER, P.; GRINDLAY, J.; HARMON, B. A.;
PACIESAS, W. S. & ZHANG, S. N.: Evidence from Quasi-Periodic Oscillations for a Millisecond
Pulsar in the Low-Mass X-Ray Binary 4U 0614+091. The Astrophysical Journal Letters, 475(2),
pp. L123–L126, February 1997, astro-ph/9610110.

[44] VAN STRAATEN, S.; FORD, E. C.; VAN DER KLIS, M.; MÉNDEZ, M. & KAARET, P.: Relations
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[70] STUCHLÍK, Z.; KOTRLOVÁ, A. & TÖRÖK, G.: Multi-resonance orbital model of high-frequency
quasi-periodic oscillations: possible high-precision determination of black hole and neutron star
spin. Astronomy & Astrophysics, 552, A10, April 2013, 1305.3552.
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& Z. STUCHLÍK, editors, RAGtime 6/7: Workshops on black holes and neutron stars, pp. 1–9,
December 2005.

[97] STUCHLIK, Z.; TOROK, G. & BAKALA, P.: On a multi-resonant origin of high frequency
quasiperiodic oscillations in the neutron-star X-ray binary 4U 1636-53. arXiv e-prints, April
2007, 0704.2318.

[98] J. SANDERS, M. G. O. B. O. I., H. BRUNNER & ESASS TEAM (MPE) / E. CHURAZOV: The first all-sky
x-ray map to be released in 30 years reveals new wonders of the hot and energetic universe, 2020,
URL https://skyandtelescope.org/astronomy-news/first-all-sky-map-erosita/

?fbclid=IwAR3JLje8GC9AuIte8fKXfbJ9RvgKIvHaAylG8kpvXXbe9Xvq9aAl4DfAoeQ.

[99] SMALE, A. P.; ZHANG, W. & WHITE, N. E.: Discovery of Kilohertz Quasi-periodic Oscillations
from 4U 1820-303 with Rossi X-Ray Timing Explorer. The Astrophysical Journal Letters, 483(2),
pp. L119–L122, July 1997.

[100] BOIRIN, L.; BARRET, D.; OLIVE, J. F.; BLOSER, P. F. & GRINDLAY, J. E.: Low and high fre-
quency quasi-periodic oscillations in 4U1915-05. Astronomy & Astrophysics, 361, pp. 121–138,
September 2000, astro-ph/0007071.
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[113] ŠRÁMKOVÁ, E.; TÖRÖK, G.; KOTRLOVÁ, A.; BAKALA, P.; ABRAMOWICZ, M. A.; STUCHLÍK, Z.;
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[118] TÖRÖK, G.; GOLUCHOVÁ, K.; ŠRÁMKOVÁ, E.; URBANEC, M. & STRAUB, O.: Time-scale of
twin-peak quasi-periodic oscillations and mass of accreting neutron stars. Monthly Notices of the
Royal Astronomical Society, 488(3), pp. 3896–3903, September 2019, 1907.05174.

[119] BAKALA, P.; DE FALCO, V.; BATTISTA, E.; GOLUCHOVÁ, K.; LANČOVÁ, D.; FALANGA, M. &
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pavel.bakala@fpf.slu.cz, martin.urbanec@fpf.slu.cz, zdenek.stuchlik@fpf.slu.cz, terek@volny.cz, sram_eva@centrum.cz, www.physics.cz
Received 2010 November 30; accepted 2012 September 26; published 2012 November 16

ABSTRACT

Twin peak quasi-periodic oscillations (QPOs) appear in the X-ray power-density spectra of several accreting low-
mass neutron star (NS) binaries. Observations of the peculiar Z-source Circinus X-1 display unusually low QPO
frequencies. Using these observations, we have previously considered the relativistic precession (RP) twin peak
QPO model to estimate the mass of the central NS in Circinus X-1. We have shown that such an estimate results in
a specific mass–angular-momentum (M – j) relation rather than a single preferred combination of M and j. Here we
confront our previous results with another binary, the atoll source 4U 1636−53 that displays the twin peak QPOs
at very high frequencies, and extend the consideration to various twin peak QPO models. In analogy to the RP
model, we find that these imply their own specific M – j relations. We explore these relations for both sources and
note differences in the χ2 behavior that represent a dichotomy between high- and low-frequency sources. Based
on the RP model, we demonstrate that this dichotomy is related to a strong variability of the model predictive
power across the frequency plane. This variability naturally comes from the radial dependence of characteristic
frequencies of orbital motion. As a consequence, the restrictions on the models resulting from observations of
low-frequency sources are weaker than those in the case of high-frequency sources. Finally we also discuss the
need for a correction to the RP model and consider the removing of M – j degeneracies, based on the twin peak
QPO-independent angular momentum estimates.

Key words: stars: neutron – X-rays: binaries

1. INTRODUCTION

Several low-mass neutron star binaries (NS LMXBs) exhibit
in the high-frequency part of their X-ray power-density spectra
(PDS) two distinct peaks, so-called twin peak quasi-periodic
oscillations (QPOs). The two peaks are referred to as the upper
and lower QPO. Centroid frequencies of these QPOs, νL and
νU , vary over time, but follow frequency correlations specific
to individual sources. However, these specific correlations are
qualitatively similar (see Psaltis et al. 1999; Stella et al. 1999;
Abramowicz et al. 2005a, 2005b, and references therein). In
some cases, the frequency ranges spanned by a single source
are as large as a few hundreds of Hz. At present, there is no
consensus on the QPO origin. Numerous models have been pro-
posed, mostly assuming that the two twin QPOs carry important
information about the inner accreting region dominated by the
effects of strong Einstein’s gravity. In principle, several of these
models imply restrictions to neutron star (NS) parameters (a sys-
tematic treatment of these restrictions through the fitting of twin
peak QPO correlations was pioneered by Psaltis et al. 1998). A
brief introduction to QPOs and their models can be found in van
der Klis (2006).

In our previous work, Török et al. (2010), hereafter Paper I, we
focused on restrictions of a particular “relativistic precession”
(RP) QPO model and a peculiar bright Z-source Circinus X-1.
The RP model introduced by Stella & Vietri (1999) and Stella
et al. (1999) identifies the lower and upper kHz QPOs with
the periastron precession νP and Keplerian νK frequency of a
perturbed circular geodesic motion at the given radii r,

νL(r) = νP (r) = νK(r) − νr(r), νU (r) = νK(r), (1)

where νr is the radial epicyclic frequency of the Keplerian
motion. In Paper I we noticed that the RP model well matches the

data points of Circinus X-1 for any dimensionless NS angular
momentum, j ≡ cJ/GM2, when the assumed NS mass reads
M ∼ 2.2 M�[1+0.55(j +j 2)]. We have shown that the existence
of such a mass–angular-momentum (M − j ) relation is generic
for the model.

Circinus X-1 that we discussed in Paper I is a relatively well-
known source, since it displays twin QPOs at unusually low
frequencies, νL ∈ (50 Hz, 250 Hz) and νU ∈ (200 Hz, 500 Hz)
(see Boutloukos et al. 2006, who discovered its QPOs). Here we
consider another binary, a faint atoll source 4U 1636−53 that, on
the contrary, displays twin peak QPOs at very high frequencies,
νL ∈ (550 Hz, 1000 Hz) and νU ∈ (800 Hz, 1250 Hz) (Barret
et al. 2005b, 2005c). As illustrated in Figure 1(a), also assuming
this source we can confront the two representatives of high-
and low-frequency twin peak QPO sources (in general, twin
peak QPOs are more often detected at rather low frequencies
in Z-sources and high frequencies in atoll sources, but there are
some counterexamples, e.g., Z-source Sco X-1; see van der Klis
2006). Apart from the RP model, we extend our consideration
to several other twin peak QPO models. The text is organized
as follows.

In Section 2, we briefly recall some points from Paper I that
are of generic importance for the present work. In Section 3,
we briefly recall the data used and their origin along with the
set of QPO models that are considered within the paper. In
Section 4, we fit the data points with the frequency relations
predicted by individual models and show that, in analogy to
the RP model, each of them implies its specific mass–angular-
momentum relation. In Section 5, we discuss the issue of the
models’ predictive power variability across the frequency plane.
We also briefly investigate the requirement of a correction to the
RP model and suggest that it can be relevant to both high- and
low-frequency sources. In Section 6, we discuss our results and
present some concluding remarks.

1
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(a) (b)

Figure 1. (a) Twin peak QPO frequencies in the atoll source 4U 1636−53 (22 data points in purple), Z-source Circinus X-1 (11 data points in red/yellow), and several
other atoll and Z-sources (data points in black). (b) The χ2 dependence on M and j for the RP model. The top panel corresponds to 4U 1636−53 while the bottom
panel corresponds to Circinus X-1. For 4U 1636−53 ξ = 4 is assumed. The dashed green line indicates the best χ2 for a fixed M. The continuous green line denotes
its quadratic approximation. The white lines indicate corresponding 1σ and 2σ confidence levels. The white cross-marker denotes the mass and angular momentum
reported for 4U 1636−53 and the RP model by Lin et al. (2011; see Section 6). The dashed yellow line in the top panel indicates a simplified estimate on the upper
limits on M and j assuming that the highest observed upper QPO frequency in 4U 1636−53 is associated with the ISCO. This estimate is not included for Circinus
X-1 because the observed frequencies clearly point to radii far away from ISCO which can be seen from Figure 6.

2. MASS–ANGULAR-MOMENTUM RELATION
FROM RP MODEL

As found in Paper I, the data points of Circinus X-1 are
well matched by the RP model when the combinations of
the source mass and angular momentum are in the form of
M ∼ 2.2 M�[1+0.55(j +j 2)]. The existence of such an (M−j )
relation is generic to the model. Let us briefly recall the major
points and implications of our previous results.

We found that due to the properties of the RP model and the
NS spacetime the quality of fit for a given source should not
differ much from the following general relation:

M ∼ M0[1 + k(j + j 2)]. (2)

In this relation, M0 is the mass that provides the best fit assuming
a non-rotating star (j = 0). The coefficient k, implied by the
model, would read k = 0.7 if the measured data points were
sampled uniformly along the large range of frequencies

νL ∈ (ν � νISCO, νISCO), (3)

where νISCO denotes the Keplerian orbital frequency at the in-
nermost stable circular orbit rms (hereafter ISCO). The available
data points are, however, unequally sampled and often cluster,
either simply due to incomplete sampling and weakness of the
two QPOs outside the limited frequency range, or due to the
intrinsic source clustering (Abramowicz et al. 2003a; Belloni
et al. 2005, 2007b; Török et al. 2008a, 2008b, 2008c; Barret &
Boutelier 2008; Boutelier et al. 2010).

2.1. Importance of Frequency Ratio for the RP Model
Predictions in Different Sources

In the detailed analysis presented in Appendix A.2 of
Paper I, we elaborated the influence of unequal sampling of

the frequency correlation νU (νL). It is important that frequencies
predicted from the RP model scale as 1/M for a fixed j, and
in this sense the expected frequency ratio, R ≡ νU/νL, is mass
independent. Moreover, in the RP model, it is

R = νK/ (νK − νr) . (4)

The frequency νr vanishes when the radial coordinate ap-
proaches ISCO, r → rms, and therefore R → 1. On the other
hand, when r → ∞ the spacetime becomes flat, reaching the
Newtonian limit where νr → νK and R diverges. The QPOs
that are expected to arise close to ISCO therefore always re-
veal a low R, while those expected to arise in a large radial
distance from the NS reveal a high R. For any NS parameters,
the top part (relatively high frequencies) of a given frequency
correlation νU (νL) predicted by the RP model then reveals a fre-
quency ratio close to R = 1. The bottom part (relatively low fre-
quencies) of the frequency correlation reveals a high frequency
ratio R � 3.1

Based on the above-mentioned theoretical prediction of
the RP model, in Paper I we found that the value of k in
mass–angular-momentum relation (2) must tend to k ∼ 0.75
when the range of the ratio of the lower and upper QPO
frequencies in the sample falls to low values close to R = 1.
On the other hand, it is k ∼ 0.5 when the range of R has a high
value (R ∼ 5). This consequence of unequal sampling does not
depend on the absolute values of the QPO frequencies.

As noticed first by Stella & Vietri (1999) and Stella et al.
(1999) and later discussed in several works (e.g., Belloni
et al. 2007a), the frequencies of the twin peak QPOs ob-
served in most of the NS sources are roughly matched by
the frequency correlation implied by the RP model for the

1 In Paper I we have shown that more than 60% of the length of the expected
curve νU (νL) corresponds to R < 3 (see Figure 9 of Paper I).
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NS mass M ∼ 2 M�. Assuming this mass, the low fre-
quency ratio R � 1.5 roughly corresponds to high QPO
frequencies, νL ∼ 0.6–1 kHz, while R ∼ (2–5) corre-
sponds to low QPO frequencies, νL ∼ 50–500 Hz. This
roughly matches the phenomenological division between “low-”
and “high”-frequency twin peak QPO sources based on the dis-
tribution of typical frequencies of QPOs observed in individual
continuous observations. Thus, in practice, the expected value
of k = 0.7 changes due to unequal sampling only very slightly
to k ∼ 0.7–0.75 for available data on high-frequency twin peak
QPO sources. For the available data on low-frequency twin peak
QPO sources, the effect of unequal sampling is more important,
changing k to ∼0.5–0.65, which also corresponds to the case of
Circinus X-1 elaborated in Paper I. Detailed quantification of
restrictions on k can be found in Table 1 of Paper I.

Next we justify our result by comparing the case of Circinus
X-1 to the case of the high-frequency source 4U 1636−53,
for which we expect k ∼ 0.7–0.75. Then we explore whether
several other QPO models imply their own M − j relations or not.

3. DATA AND MODELS

Figure 1(a) shows several twin peak QPO data points coming
from the works of Barret et al. (2005b, 2005c), Boirin et al.
(2000), Di Salvo et al. (2003), Homan et al. (2002), Jonker et al.
(2002a, 2002b), Méndez & van der Klis (2000), Méndez
et al. (2001), van Straaten et al. (2000, 2002), Zhang et al.
(1998), and Boutloukos et al. (2006). For the analysis presented
in this paper we use the twin peak QPO data of 4U 163−53
(from Barret et al. 2005b, 2005c) and Circinus X-1 (from
Boutloukos et al. 2006). These data points are denoted in the
figure by the color-coded symbols. Each of them corresponds
to an individual continuous segment of the source observation.
One can see that our choice of the two representative NSs allows
us to demonstrate the confrontation between the low- and high-
frequency sources, as mentioned in the previous section. Details
of the observations, data analysis techniques, and properties of
the twin peak QPOs in the two sources discussed can be found
in Barret et al. (2005b, 2005c, 2006), Boutloukos et al. (2006),
Méndez (2006), and van der Klis (2006).

Each of the many QPO models proposed (e.g., Alpar &
Shaham 1985; Lamb et al. 1985; Miller at al. 1998; Psaltis
et al. 1999; Wagoner 1999; Wagoner et al. 2001; Abramowicz
& Kluźniak 2001; Titarchuk & Kent 2002; Rezzolla et al.
2003; Pétri 2005; Zhang 2005; Kato 2007; Stuchlı́k et al.
2008; Mukhopadhyay 2009) still faces several difficulties and,
at present, none of them is favored. In such a situation, we
expect that the estimations of mass and angular momentum
based on the individual models could be helpful for the further
development or falsification of an appropriate model. In the
next section we therefore consider several of these models in
addition to the RP model investigated in Paper I, and examine
what mass–angular-momentum relations they imply. Since we
do not attempt to describe the individual models and resolve
all their specific issues in detail, in what follows we just give a
short summary of the models examined and highlight some of
their distinctions along with the related references.2

3.1. Individual Models

The RP model has been proposed in a series of papers by
Stella & Vietri (1998a, 1998b, 1999, 2002) and Morsink & Stella

2 Some more details on these models and a discussion of their relevance to
black-hole QPOs can be found in Török et al. (2011).

(1999) and explains the kHz QPOs as a direct manifestation of
modes of relativistic epicyclic motion of blobs at various radii
r in the inner parts of the accretion disk. Within the model, the
twin peak QPO frequency correlation arises due to periastron
precession of the relativistic orbits. Because of the existence of
another so-called Lense–Thirring RP the model also predicts
another frequency correlation extending to higher timescales.
The kHz QPO frequencies are indeed correlated with the low-
frequency QPO features observed far below 100 Hz, which
were first noticed and discussed in the works of Psaltis et al.
(1999), Stella & Vietri (1999), and Stella et al. (1999). Here
we restrict our attention mostly to kHz features but the low-
frequency QPO interpretation within the RP model is briefly
considered in Section 6 and Appendix B.1.

Recently, C̆adež et al. (2008), Kostić et al. (2009), and
Germana et al. (2009) have introduced a similar concept
in which the QPOs were generated by a “tidal disruption”
(TD) of large accreting inhomogeneities. It is assumed—and
is supported by some hydrodynamic simulations—that blobs
orbiting the central compact object are stretched by tidal forces
forming “ring-section” features that are responsible for the
observed modulation. The model has been proposed for black
hole (BH) sources (both supermassive and stellar mass) but, in
principle, it should work for compact NS sources as well. In
some cases at least, the PDS produced within the model seem
to well reproduce those observed.

It is often argued that QPOs arise due to “disk oscillations”
(in contrast to the above models considering “hot-spot motion”)
and that some resonances can be involved. The disk-oscillation
concept has a good potential for explaining the high QPO
coherence times observed in some NS systems (see Barret
et al. 2005a, who first recognized the importance of the high
QPO quality factor measured in 4U 1636−53, Q ∼ 200). The
resonance hypothesis is supported by the appearance of the
3:2 frequency ratio observed in BH sources (Abramowicz &
Kluźniak 2001; McClintock & Remillard 2006; Török et al.
2005). There is also a less straightforward evidence for the
importance of the same 3:2 ratio in the case of NS sources which
was first noticed in terms of the frequency ratio R ≡ νU/νL

clustering (see Abramowicz et al. 2003a; Belloni et al. 2005,
2007b; Török et al. 2008a, 2008b, 2008c; Boutelier et al. 2010,
for details and related discussion). As found recently, in the six
atoll NS systems including 4U 1636−53, the difference between
the rms amplitudes of the upper and lower QPOs changes its
sign for resonant frequency ratios R = 3:2 (Török 2009). This
interesting effect still requires some further investigation, since
the rms amplitudes of kHz QPOs are energy dependent and
this must be taken into account. Nevertheless, we note that it
was suggested by Horák et al. (2009) that the “energy switch”
effect could be naturally explained in terms of the theory of the
nonlinear resonance.

Two examples of the often quoted resonant disk-oscillation
models are the epicyclic resonance (ER) model (Kluźniak &
Abramowicz 2001; Abramowicz et al. 2003b, 2003c; Kluźniak
et al. 2004) assuming axisymmetric modes and the “warped
disk” (WD) oscillation model suggested by Kato (2001, 2007,
2008) that assumes non-axisymmetric modes. We consider these
and also another two QPO resonance models dealing with differ-
ent combinations of non-axisymmetric disk-oscillation modes.
The latter two models are of particular interest because they
involve oscillation modes whose frequencies almost coincide
with the frequencies predicted by the RP model when the NS
rotates slowly. We denote them as the RP1 (Bursa 2005) and RP2
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Table 1
The Main Definition Relations for the Models Considered and the Mass–Angular-momentum Relations Found for 4U 1636−53 and Circinus X-1

Model Atoll Source 4U 1636−53 Z-source Circinus X-1

χ2/dof ∼ (M0/M�) × f (j ) χ2/dof ∼ (M0/M�) × f (j )

RP
νL = νK − νr, 16 1.78[±0.03] × [1 + 0.7(j + j2)] 1.3 2.2[±0.3] × [1 + 0.5(j + j2)]
νU = νK

TD
νL = νK , 7 2.15[±0.02] × [1 + 0.7(j + j2)] 30 X
νU = νK + νr

WD
νL = 2(νK − νr), 21 2.49[±0.1] × [1 + 0.7(j + j2)] 1.1 1.3a

νU = 2νK − νr

RP1
νL = νK − νr, 16 1.78[±0.03] × [1 + 0.5(j + j2)] 1.3 2.2[±0.3] × [1 + 0.4(j + j2)]
νU = νθ

RP2
νL = νK − νr, 16 1.78[±0.03] × [1 + 1.0(j + j2)] 1.3 2.2[±0.3] × [1 + 0.7(j + j2)]
νU = 2νK − νθ

ER
νL = νr + ΔνL

b, 3 0.95[±0.1] × [1 + 0.8j − 2j2] 1.5 3.5[±0.3] × [1 + 1.9(j + j2)]c

νU = νθ + ΔνU

Notes. Symbols νK, νr, and νθ denote the orbital Keplerian, radial epicyclic, and vertical epicyclic frequencies (see Appendix A.1 for the explicit terms in the Kerr
spacetimes). For both sources, except for the ER model, the errors in the estimated mass corresponds to the 2σ confidence level. For the ER model, the errors are given
by the scatter in the estimated resonant eigenfrequencies (see Urbanec et al. 2010b).
a The mass–angular-momentum relation that we found reads M = 1.3[+0.3,−0.2] M� × [1 + 0.4(j + j2)]. Due to the low M0, the angular momentum dependence
cannot be taken seriously (see Section 6 for a comment on this).
b See Section 4.4 for details.
c The possibility that the observed frequencies are the resonant combinational frequencies is taken into account.

(Török et al. 2007, 2010) models and assume that the resonant
corrections to the eigenfrequencies are negligible.

3.1.1. Frequency Relations

The relations that define the upper and lower QPO frequencies
in terms of the orbital frequencies are given for each of the
above models in the first column of Table 1. We include these
terms for the case of the Kerr spacetimes in Appendix A.1.
The applicability of an approach assuming the Kerr spacetimes
for high-mass NSs was elaborated in Paper I. The relevance
and limitations of the same approach within the work and
results presented here are discussed more in Section 6 and
Appendix A.3.

For the RP model, one can easily solve the definition relations
to arrive at the explicit formula which relates the upper and lower
QPO frequencies. A similar simple evaluation of an explicit rela-
tion between the two observed QPO frequencies is also possible
for the TD model. For the RP and TD models, we give the ex-
plicit formulas in Equations (A3) and (A4). For the WD, RP1,
and RP2 models the definition relations lead to high-order poly-
nomial equations that relate the lower and upper QPO frequen-
cies. In these cases, in Appendix A.1 we give only the implicit
form of the νU (νL) function which has to be treated numerically.

For the version of the ER model assumed here, we expect the
νU (νL) function in the form of a linear relation. This approach
follows the work of Abramowicz et al. (2005a, 2005b) and
related details are briefly recalled in Section 4.4.

4. DATA MATCHING

In this section we fit the data points of 4U 1636−53 and
Circinus X-1 with frequency relations predicted from each

of the individual models (i.e., by functions (A3) and (A4)
for the RP and TD model, respectively, by a straight line
for the ER model, and by the numerically given solutions of
Equations (A5)–(A7) for the other models).3 As in Paper I, we
restrict the range of mass and angular momentum considered to
[M ∈ (1, 4) M�] × [j ∈ (0, 0.5)]. For all the models except
the ER model (Section 4.4), we first find the best fit in the
Schwarzschild spacetime (j = 0) for a single free parameter M
using the least-squares fitting procedure (e.g., Press et al. 2007).
Then we also inspect the two-dimensional χ2 behavior for the
free M and j.

Within the numerical approach adopted the model frequency
curve is parameterized along its full length through a parameter
p which ranges from p∞ to pISCO. The exact definition of χ2

that we use here is then given as

χ2 ≡
m∑

n=1

Δ2
n, with Δn = Min

(
ln, p

σn ,p

)pISCO

p∞

, (5)

where ln, p is the length of a line between the nth measured data
point [νL(n), νU (n)] and a point [νL(p), νU (p)] belonging to the
model frequency curve. The quantity σn ,p equals the length of
the part of this line located within the error ellipse around the
data point.

4.1. Results for the RP, RP1, and RP2 Models

Considering j = 0 for fitting the data of 4U 1636−53 with
the RP model, we find a narrow χ2 minimum for M0 ∼ 1.8 M�
3 At this point we should also note that our choice of models represents a
subset of those recently discussed by Lin et al. (2011) for the two sources 4U
1636−53 and Sco X-1. An overlap with their work is discussed in Section 6.
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but its value is rather high, χ2 .= 350/21 dof. We also
find that there is no sufficient improvement along the whole
given range of mass even up to the upper limit of j. Thus,
assuming that the model is valid, we can only speculate that
there is an unknown systematic uncertainty. Then it follows
from Equation (5) that the χ2 of the best fit for j = 0 drops
to an acceptable value χ2 = 1 dof when the uncertainties in
the measured QPO frequencies are multiplied (underestimated)
by factor ξ ≡

√
χ2/dof

.= 4. Under this consideration we
find the NS mass from the best-fit reading M0 = 1.78 M�.
We express the corresponding scatter in the estimated mass as
δM = [±0.03] M�, assuming the 2σ confidence level which
we henceforth use as the reference one.

On the other hand, the best match to the data of Circinus
X-1 for the RP model and j = 0 already reveals an acceptable
value of χ2 .= 12.9/10 dof, and in summary we can write the
quantities M0 inferred from the RP model for both sources as

M0 = 1.78[±0.03] M�
in 4U 1636–53 (χ2 = 1 dof ⇔ ξ

.= 4) (6)

and

M0 = 2.19[±0.3] M�
in Circinus X-1 (χ2 = 12.9/10 dof). (7)

As found in Paper I and briefly recalled here in Section 2,
for the RP model and a given source the χ2 should not differ
much along the M − j relation M ∼ M0[1 + k(j + j 2)] where
k ∼ 0.7–0.75 for high-frequency sources and k ∼ 0.5–0.6
for low-frequency sources. The results of the two-dimensional
fitting of the parameters M and j agree well with this finding.
The χ2 behavior for 4U 1636−53 is depicted and compared
to the case of Circinus X-1 in the form of color-coded maps
in Figure 1(b). Clearly, the best fits are reached when M and
j are related through the specific relations denoted by the
dashed green lines. We approximate these relations in the form
M = M0 × [1 + k(j + j 2)] arriving at the following terms:

M = 1.78[±0.03] M� × [1 + 0.73(j + j 2)]

in 4U 1636–53 (8)

and

M = 2.19[±0.3] M� × [1 + 0.52(j + j 2)]

in Circinus X-1. (9)

4.1.1. Results for the RP1 Model

The frequencies predicted by the RP and RP1 models are
very similar for slowly rotating NSs. The two models commonly
define the lower observable QPO frequency as

νL = νK − νr. (10)

The upper observable QPO frequencies differ, reading

νRP
U

= νK , νRP1
U

= νθ . (11)

In the Schwarzschild limit j = 0, νθ = νK and νU is common to
both RP and RP1. Consequently,

MRP1
0 = MRP

0 , (12)

where MRP
0 is given in Equations (6) and (7) for 4U 1636−53 and

Circinus X-1, respectively. For 4U 1636−53, the quality of the
fits does not differ much between j = 0 and j �= 0 and the same
conclusions on the possible unknown systematic uncertainty as
in the case of the RP model are valid.

One can expect that fits to the data based on the RP1 model
for j �= 0 should exhibit M − j degeneracy qualitatively similar
to the case of the RP model. We do not repeat for the RP1 model
the full analysis of M − j degeneracy presented in Paper I for the
RP model. Instead, we just inspect the behavior of χ2 for free M
and j to check whether such degeneracy is present and evaluate
it. The χ2 behavior resulting for free M and j is depicted in
the form of color-coded maps in Figure 2(a). The two χ2 maps
displayed clearly reveal M − j degeneracy qualitatively similar
to that of the RP model. Related M − j relations (best χ2 for a
fixed M) are denoted by dashed green lines in Figure 2(a). We
approximate these relations in the form M = M0×[1+k(j +j 2)]
arriving at the following terms:

M = 1.78[±0.03] M� × [1 + 0.48(j + j 2)]

in 4U 1636–53 (13)

and

M = 2.19[±0.3] M� × [1 + 0.39(j + j 2)]

in Circinus X-1. (14)

4.1.2. Results for the RP2 Model

As in the previous case, the frequencies predicted by the RP2
model are very similar to those of the RP model for a slowly
rotating NS. The lower observable QPO frequency is commonly
defined by Equation (10). The upper observable QPO frequency
differs from the RP model and reads

νRP2
U

= 2νK − νθ . (15)

However, in the Schwarzschild limit j = 0 νθ = νK and the
expression for the upper observable QPO frequency νU = νK is
common for all the three models RP, RP1, and RP2. For j = 0,
therefore, the frequency relations implied by these models merge
(although the expected mechanisms generating the QPOs are
different). Thus we can write

MRP2
0 = MRP1

0 = MRP
0 , (16)

where MRP
0 is given in Equation (6) for 4U 1636−53 and

Equation (7) for Circinus X-1. For 4U 1636−53, the quality
of the fits is again not much different between j = 0 and j �= 0
and the same conclusions are valid on the possible unknown
systematic uncertainty as in the case of the RP1 and RP2 models.

The χ2 behavior resulting from fitting the data points for
free M and j is depicted in the form of color-coded maps
in Figure 2(b). These χ2 maps again clearly reveal M − j
degeneracy qualitatively similar to that in the case of the RP
and RP1 models. The best χ2 for a fixed M (M − j relation) is in
each case denoted by the dashed green line. The corresponding
approximate relations in the form M = M0 × [1 + k(j + j 2)]
read

M = 1.78[±0.03] M� × [1 + 0.98(j + j 2)]

in 4U 1636–53 (17)

and

M = 2.19[±0.3] M� × [1 + 0.65(j + j 2)]

in Circinus X-1. (18)
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(a) RP1 model (b) RP2 model

(c) WD model (d) TD model

Figure 2. Same as Figure 1(b), but for the other models. In 4U 1636−53 ξ = 4 is assumed for the RP1 and RP2 models, ξ = 4.6 for the WD model, and ξ = 2.5 for
the TD model. For the TD model the ISCO estimate on the upper limits on M and j from the highest observed QPO frequency in 4U 1636−53 is not included since
the model does not associate this frequency to the ISCO but to the radius where the term νK (r) + νr(r) reaches its maximum.

4.2. Results for the WD Model

Considering j = 0 for fitting the data of 4U 1636−53
we find a narrow χ2 minimum for M0 ∼ 2.5 M� but its
absolute value is somewhat higher than in the case of the RP
model, χ2 .= 450/21 dof. Moreover, there is also no sufficient
improvement along the whole given range of mass even up to
the upper limit of j. Thus, we can again only speculate that
there is an unknown systematic uncertainty. The χ2 of the best
fit for j = 0 drops to an acceptable value χ2 = 1 dof for
ξ

.= 4.6. The related mass corresponding to the best fit then
reads M0 = 2.49[±0.1] M�.

In analogy to the RP model, the best match to the data
of Circinus X-1 for j = 0 reveals an acceptable value of
χ2 .= 10.6/10 dof. In summary, we can write the quantities
M0 for both sources as

M0 = 2.49[±0.1] M�
in 4U 1636–53 (χ2 = 1 dof ⇔ ξ = 4.6) (19)

and

M0 = 1.31[+0.3,−0.2] M�
in Circinus X-1 (χ2 = 10.6/10 dof). (20)

The χ2 behavior resulting from fitting the data points for free
M and j that again exhibits the M − j degeneracy is depicted in
Figure 2(c). The exact M − j relations in this figure are denoted
by the dashed green lines. Their approximations in the form
M = M0 × [1 + k(j + j 2)] are, as in the previous cases, marked
by the continuous green lines and read

M = 2.49[±0.1] M� × [1 + 0.68(j + j 2)]

in 4U 1636–53 (21)

and

M = 1.31[+0.3,−0.2] M� × [1 + 0.4(j + j 2)]

in Circinus X-1. (22)
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(a) (b)

Figure 3. (a) Profiles of the lowest χ2 for a given M plotted for various models. As in the previous figures, the case of 4U 1636−53 is shown in the top panel and
Circinus X-1 in the bottom panel. The schematic drawing in the inset indicates the relation between the χ2 behavior and j common to all the plotted curves. (b) The
mass–angular-momentum combinations allowed by the ER model. The color symbols indicate different equations of state (after Urbanec et al. 2010a, 2010b, see these
papers for details). The lightened subset of these symbols is compatible with the 4U 1636−53 data. The black line denotes its quadratic approximation (Equation (25)).

4.3. Results for the TD Model

Considering j = 0 for fitting the data of 4U 1636−53 we
find a narrow χ2 minimum for M0 ∼ 2.15 M� while its
value χ2 .= 137/21 dof is again unacceptable, although it is
approximately 2× lower than in the case of the RP model.
Moreover, there is also no sufficient improvement along the
whole given range of mass, even up to the upper limit of j.
Thus, again we can only speculate that there is an unknown
systematic uncertainty. The χ2 of the best fit for j = 0 drops to
the acceptable value χ2 = 1 dof for ξ

.= 2.5. The related mass
corresponding to the best fit then reads:

M0 = 2.15[±0.02] M� (χ2 = 1 dof ⇔ ξ = 2.5). (23)

For the Circinus X-1 data we find no clear χ2 minimum. It is
roughly χ2 ∼ 300/10 dof along the interval of mass considered
and χ2 is only slowly decreasing with M decreasing (or j
increasing).

Color-coded maps of χ2 resulting for free M and j are shown
in Figure 2(d). In the case of 4U 1636−53 there is clearly an
M − j degeneracy. The M − j relation is well approximated in
the form M = M0 × [1 + k(j + j 2)] as

M = 2.15[±0.02] M� × [1 + 0.71(j + j 2)]. (24)

On the other hand, the χ2 distribution for Circinus X-1 is
rather flat, exhibiting roughly χ2 ∼ 300/10 dof, whereas it
slightly decreases for decreasing M and increasing j.

For the case of 4U 1636−53 the detailed profile of χ2 along
the relation (24) is shown and compared to the RP, RP1, RP2,
and WD models in Figure 3(a). In the same figure we also show
an analogous comparison for Circinus X-1. The absence of an
M − j relation and the behavior of χ2 for the TD model in the
case of Circinus X-1 is then discussed in Section 6.

4.4. Results for the ER Model

Adopting the assumption that the observed frequencies are
nearly equal to the resonant eigenfrequencies, νU = νθ (r)
and νL = νr(r), the ER model does not fit the NS data

(e.g., Belloni et al. 2005; Urbanec et al. 2010b; Lin et al.
2011). A somewhat more complicated case in which this
assumption is not fulfilled has been recently elaborated by
Urbanec et al. (2010b), who assumed data for 12 NS sources,
including 4U 1636−53. They investigated the suggestion made
by Abramowicz et al. (2005a, 2005b) that the resonant eigen-
frequencies in 12 NS sources roughly read ν 0

L
= 600 Hz versus

ν 0
U

= 900 Hz and the observed correlations follow from the res-
onant corrections to the eigenfrequencies, νL = ν 0

L
+ ΔνL versus

νU = ν 0
U

+ ΔνU . In this concept the resonance occurs at the fixed
radius r3:2 and the data of the individual sources are expected
as a linear correlation. Intersection of this correlation with the
νU/νL = 3/2 relation gives the resonant eigenfrequencies since
it is expected that ΔνL = ΔνU = 0 when R = 3/2. More de-
tails and references to the model can be found in Urbanec et al.
(2010b).

For the sake of the comparison with the RP and other models
examined here, we plot Figure 3(b) based on the results of
Urbanec et al. (2010b). The figure displays combinations of
mass and angular momentum required by the model. The color-
coded symbols indicate solutions for different equations of state
(EoS). We denote the subset of these solutions compatible with
the data of 4U 1636−53 by lighter symbols. The determination
of this subset comes from the fit of 4U 1636−53 data by a
straight line (χ2 = 37/20/dof). It is clear from the figure
that, as in the previous cases, for the ER model there is
a preferred mass–angular-momentum relation. In contrast to
the other models examined, it tends to a positive correlation
between M and j only for low values of the angular momentum,
j � 0.2, while for higher j the required mass decreases with
increasing j. This trend is connected to the high influence of the
NS quadrupole momentum and large deviation from the Kerr
geometry that arise for the low-mass NS configurations (see
Urbanec et al. 2010b for details). We find that the mass–angular-
momentum relation implied by the ER model for 4U 1636−53
can be approximated by a quadratic term roughly as (black curve
in Figure 3(b))

M = 0.95 M� × [1 + 0.8j − 2j 2] ± 10%. (25)
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(a) (b) (c)

Figure 4. (a) Frequency relations predicted by the (geodesic) RP model for j = 0 vs. data for 4U 1636−53 and Circinus X-1. (b) Quantity P illustrating the variability
of the predictive power of the RP model across the frequency plane. (c) Profiles of the orbital, radial epicyclic, and periastron frequencies of the perturbed circular
motion. Solid curves correspond to the geodesic case (β = 0). The dashed and dotted curves correspond to the case of non-geodesic radial oscillations (β > 0).

For Circinus X-1, the observed frequency ratio is far away
from R = 3/2 and the ER model assumed above cannot fit
the Circinus X-1 data without additional assumptions. The high
frequency ratio can be reproduced only if the resonant combina-
tion frequencies are taken into account (e.g., Török et al. 2006).
In such a case, the lower observed QPO frequency would cor-
respond to a difference between the resonant eigenfrequencies
having values about (300 Hz, 200 Hz), i.e., approximately 3×
less than the typical twin peak QPO frequencies observed in
4U 1636−53. The related non-rotating mass would then be ap-
proximately 3× higher than that corresponding to 4U 1636−53,
i.e., M0 ∼ 3 M�. The related fit of the Circinus X-1 data by
a straight line has χ2 = 16/10 dof. Taking into account the
change in eigenfrequencies due to the NS angular momentum
and assuming the Kerr spacetime with j < 0.5, we can express
the formula for the mass of Circinus X-1 implied by the ER
model approximately as

M = 3 M� × [1 + 1.9(j + j 2)] ± 10%. (26)

While for 4U 1636−53 the mass decreases with increasing
j (Equation (25)), for Circinus X-1 the trend is opposite.
This behavior is associated with the choice of the spacetime
geometry. The low mass M0 ∼ 1 M� inferred from the model
for 4U 1636−53 implies high deviations from the Kerr geometry
due to the NS oblateness (Urbanec et al. 2010a, 2010b). In
such situations orbital frequencies can decrease with increasing
j. For Circinus X-1, the high mass M0 = 3 M� justifies the
applicability of the Kerr geometry chosen. For this geometry,
the orbital frequencies must increase with increasing j (provided
that j < 1). This issue is well illustrated by the behavior of ISCO
frequencies in the right panel of Figure 3 in Paper I.

5. CHI-SQUARED DICHOTOMY AND CORRECTIONS
TO THE RP OR OTHER MODELS

It has been noticed by Stella & Vietri (1999) and later by
a number of other authors that data for sources with QPOs
sampled mostly on low frequencies are better fitted by the RP
model than data for sources with QPOs sampled mostly on high
frequencies. Inspecting the χ -squared maps (Figures 1 and 2)
and Table 1, we can see that the comparison between Circinus X-
1 (good χ2) and 4U 1636−53 (bad χ2) well demonstrates such
a “dichotomy”. The χ2 maps and profiles for the RP model

are qualitatively similar for both 4U 1636−53 and Circinus X-
1. Both sources also exhibit a decrease of χ2 with increasing
j (see Figure 3(a)). The χ2 values reached for 4U 1636−53
are, however, much worse than those in the case of Circinus
X-1 (≈10 versus 1 dof), and their spread with M is much
narrower. Moreover, we find that a similar dichotomy also
arises for all the other models considered assuming that the
observed twin peak QPO frequency correlation arises directly
from a correlation between characteristic frequencies of the
orbital motion. Below we briefly discuss the relation between
this dichotomy, the predictive power of the model, and possible
non-geodesic corrections. We restrict our attention mostly to the
RP model but argue that there is a straightforward generalization
to the other models.

5.1. Data versus Predictive Power of the RP Model

Figure 4(a) shows the frequency relations predicted by the
RP model for a non-rotating NS and several values of mass M.
These curves run from the common point [νL, νU ] = [0 Hz, 0 Hz]
corresponding to infinite r. They terminate at specific points
[νISCO, νISCO] corresponding to r = rms = rISCO. This behavior
follows from the fact that for low excitation radii close to ISCO,
a certain change in M leads to a modification of the orbital
frequency that is much higher than those for radii far away from
ISCO. In other words, the predictive power of the RP model is
much weaker for radii far away from ISCO than for radii close
to ISCO.

As recalled in Section 1, in the RP model the radius r is
proportional to R (e.g., Török et al. 2008c). Because of this,
the predictive power of the RP model is strongly decreasing
with increasing R. In Appendix A.2 we discuss this in terms
of the quantity P ∝ R−3 determining the squared distance ds2

measured in the frequency plane between data points related to
different masses. This quantity has a direct impact on the spread
of χ2. For a certain variation of the mass, δ ≡ ΔM/M , it is

ds2 ∝ δ2

(1 + δ)2
P. (27)

Detailed formulas are given in Equations (A11) and (A12).
Figure 4(b) shows the behavior of P in the frequency plane.

Taking into account the data points included in Figures 4(a)
and (b) and the behavior of P we can deduce that the difference
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(a) (b) (c)

Figure 5. (a) Profile of the best χ2 for a fixed M calculated when the simulated data are matched by the geodesic RP model. The continuous line is plotted for
M = 2 M�, j = 0, and β = 0.1. The dashed line is plotted for β = 0. The arrows indicate increasing j. (b) Profiles of the best χ2 for a fixed M in the case when
Equation (29) is assumed for fitting the real data. The arrows in each panel indicate increasing j. The vertical arrow denotes the improvement Δχ2. (c) Comparison of
the geodesic (β = 0, thick blue line) and non-geodesic (β > 0, red line) fits is included in the “zoom” from Figure 4(a). The top panel is plotted for 4U 1636−53
while the bottom panel is plotted for Circinus X-1. Both panels have the same scaling of the axes.

in the spread of χ2 in 4U 1636−53 and Circinus X-1, as well
as the very different values of the χ2 minima in these sources,
can be related to both the size of the error bars (affected by
a low significance of kHz QPOs on low frequencies) and the
location of data points. In Circinus X-1, the data points lie in
the region of relatively low frequencies related to high R. For
these, the predictive power of the model is low, since the curves
νU (νL) expected for various parameters M and j converge. On the
other hand, in 4U 1636−53, the data points lie in the region of
relatively high frequencies related to low R. These correspond
to the strong gravity zone where different correlations are much
more distinguished and the predictive power of the model is
high. A similar consideration is also valid for several other
models that predict frequency curves converging at low R.
Clearly, from Figures 1 and 2 we can see that the uncertainties
of the inferred mass expressed at 2σ confidence levels in 4U
1636−53 are ∼20× smaller compared to Circinus X-1 for each
of the RP, RP1, RP2, and WD models.

5.2. Toy Non-geodesic Modification of the RP Model

Based on the above findings, we can speculate that the same
systematic deviation from the particular model considered may
be involved in both sources. We justify this speculation using an
arbitrary example of a toy non-geodesic version of the RP model.

We attempt to use a modification that would mimic the behavior
of real data. In the vicinity of the inner edge of an accretion
disk it is natural to expect a modification of the radial epicyclic
frequency rather than a modification of the Keplerian frequency.
The orbital motion in this region is highly sensitive to radial
perturbations and even very small deviations from the geodesic
idealization can strongly affect the radial oscillations (see in
this context Stuchlı́k et al. 2011). In our example we therefore
assume that the frequency of the hot-spot radial oscillations
is somewhat lowered due to pressure or magnetic field effects
(e.g., Straub & Šrámková 2009; Bakala et al. 2010, 2012). For
simplicity, we postulate that the effective frequency of the radial
oscillations is

ν̃r = νr(1 − β), (28)

where β is a small constant. The related lower QPO frequency
actually observed is then given by

ν̃L = νL + β (νU − νL) , (29)

where νL(νU ) is the frequency relation of the geodesic RP model
given in Equation (A3). Assuming Equation (29), β = 0.1,
j = 0, and M = 2 M� we produce 20 data points uniformly
distributed along the frequency correlation. We then fit the
simulated data by the geodesic model. Figure 5(a) shows the
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resulting χ2 profile calculated in the same way as those in
Figure 3(a). Clearly, χ2 decreases with growing j similarly
to the results obtained for real data points in both sources
discussed. For comparison, we also present the fit of data
simulated for β = 0, where, in contrast, χ2 increases with
growing j. Having this boost we use Equation (29) for the fitting
of the real data points. The resulting “best χ2” improves for both
sources, although in the case of Circinus X-1 the improvement
is only marginal. More specifically, for 4U 1636−53 the best
χ2 improves up to β ∼ 0.2 with Δχ2 ∼ 300, while for Circinus
X-1 it improves up to β ∼ 0.1 with Δχ2 ∼ 2. The representative
χ2 profiles are illustrated in Figure 5(b), which also shows the
related impact on mass restrictions. The strong improvement in
4U 1636−53 data corresponds to only a marginal effect on the
mass restriction (ΔM � 0.1 M�). On the other hand, the small
improvement of χ2 in Circinus X-1 causes a large modification
of the mass restriction (ΔM ∼ 0.6 M�). The related fits to the
data are shown in Figure 5(c).

The toy model (29) naturally does not represent an elaborate
attempt to describe the QPO mechanisms, but it demonstrates
well that, in spite of the good quality of fit, in both 4U 1636−53
and Circinus X-1 sources, the same physical correction to the RP
model could be involved. A similar consideration should also be
valid for several other models discussed. In this context, we note
that sophisticated implementations of non-geodesic corrections
have been developed in the past within the framework of
various models of accretion flow dynamics and QPOs (see, e.g.,
Wagoner et al. 1999, 2001; Kato 2001; Alpar & Psaltis 2008,
and references therein). We also note that some corrections to
the orbital frequencies can arise directly due to corrections to
the Kerr or Hartle–Thorne (HT) spacetimes that we assume here
(see, e.g., Kotrlová et al. 2008; Psaltis et al. 2008; Stuchlı́k &
Kotrlová 2009; Johannsen & Psaltis 2011).

6. DISCUSSION AND CONCLUSIONS

Except the TD model applied to Circinus X-1 data, all appli-
cations of the models examined to the 4U 163−53 and Circinus
X-1 data result in the preferred mass–angular-momentum rela-
tions. These are summarized in Table 1.

Comparing the χ2 map of the TD model and Circinus X-1
(Figure 2(d)) to the other χ2 maps we can see that it is very
different with its flat χ2 behavior. Moreover, the TD model is
the only model of those considered here giving very bad χ2

for Circinus X-1 (χ2 ∼ 300/10 dof versus χ2 ∼ 10/10 dof for
the other models). This can be well understood in terms of the
frequency ratio R implied by the model. The TD model states

νL = νK , νU = νK + νr, (30)

where νr � νK . In more detail, νr vanishes at r = rISCO and, in
a flat spacetime limit (r = ∞), νr = νK . Consequently, the TD
model allows only R ∈ (1, 2). The Circinus X-1 data, however,
reveal values between R ∼ 2.5 and R ∼ 4.5 which is clearly
higher than the Newtonian limit, R = 2. This disfavors the TD
model.

6.1. Quality of Fits and Inferred Masses: Models with ν(r)

Table 1 provides a summary of results of fits to the data for
both sources by individual models. The comparison between
fits by individual models is illustrated in Figure 6 which also
indicates the inferred QPO excitation radii. Within the RP, RP1,
RP2, and WD models, the quality of fits is rather comparable

(bad for 4U 1636 and good for Circinus X-1). The mass–angular-
momentum relations are similar for the RP, RP1, and RP2
models while for the WD model they differ (see Table 1). In
more detail, the RP, RP1, and RP2 models require relatively
similar masses for both sources, namely M0 ∼ 1.8 M� for 4U
1636−53 versus 2.2 M� for Circinus X-1. On the other hand,
the required masses differ quite a lot when the WD model is
assumed. We then have M0 ∼ 2.5 M� for 4U 1636−53 versus
1.3 M� for Circinus X-1. We note that the QPO excitation radii
inferred for each model in 4U 1636−53 lie within the innermost
part of the accretion disk. This is depicted in detail in Figure 6(b)
assuming a non-rotating star. We can see that the radii span the
interval r ∈ (6M − 8M) for the RP model, r ∈ (7M − 8M) for
the WD model, and the largest interval r ∈ (6M − 9M) for the
TD model. On the contrary, the radii inferred in Circinus X-1
are above r = 10M , belonging to the interval r ∈ (10M−16M)
for the RP model and r ∈ (15M − 25M) for the WD model.

The above models have, along with few others, recently
been considered for 4U 1636−53 by Lin et al. (2011). They
reported mass and angular momentum corresponding to χ2

minima for each of the models. The data points they investigated
especially for this purpose come from a sophisticated, careful
application of a so-called shift–add procedure over a whole set
of the available RXTE observations (see their paper for details
and references). The data we use here for 4U 1636−53 come
from the previously well-investigated individual continuous
observations of the source (see Barret et al. 2005b, 2005c; Török
2009). While the two sets of the applied data come from different
methods, the values of mass and angular momentum reported
by Lin et al. (2011) agree with the mass–angular-momentum
relations that we find here (see Figures 1(b) and 2). One
should note that, in contrast to M − j relations, the single M − j
combination corresponding to the χ2 minimum of a given model
is not very informative as the (bad) χ2 is comparable along a
large range of mass. Moreover, in each case examined here the
χ2 minima correspond only to the end of the angular momentum
interval considered since the quality of fit is a monotonic
function of j. Thus, we can conclude that the differences between
the M0 coefficients in Table 1 provide the main information
about the differences between predictions of the individual QPO
models.

In relation to the quality of fits by the RP, RP1, RP2, and
WD models, we can also note that these models need some
correction, as has also been noted by Lin et al. (2011). As
demonstrated in Section 5, differences in the χ2 behavior
between low- and high-frequency sources can be related to
the variability of the model’s predictive power across the
frequency plane. This variability naturally comes from the radial
dependence of the characteristic frequencies of orbital motion.
As a consequence, the restrictions to the models resulting from
the observations of low-frequency sources are weaker than
those in the case of high-frequency sources. A small required
correction is then likely to be common to both classes of
sources, which has been demonstrated using the non-geodesic
modification of the RP model based on Equation (29).

6.1.1. Applicability of Results Based on
the Spacetime Description Adopted

Both the poor quality of fits to the data by geodesic models and
the mass–angular-momentum relations associated with these
models have been obtained assuming the Kerr spacetimes. This
approximate description of the exterior of rotating NSs neglects
the NS oblateness. As argued in Paper I, the uncertainty in
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(a) (b)

Figure 6. Best fits to the data by individual models for j = 0. (a) Frequency relations. Error bars corresponding to ξ = 4 for RP models, ξ = 4.6 for WD model, and
ξ = 2.5 for TD model are color-coded. The pair of the highest twin peak QPO frequencies observed in the source is marked by a yellow circle. (b) The QPO excitation
radii inferred from the data and each of the fits are shown in panel (a). The color-coded circles correspond to the highest observed twin peak QPO frequencies. The
TD model is included for 4U 1636−53 only because it does not match the data for Circinus X-1 (see Section 6 for a discussion).

NS oblateness causes only small inaccuracies in the modeling
of kHz QPOs for compact high-mass NSs. In the case of the
WD model applied to the Circinus X-1 data, a consequent
application of a more sophisticated approach is still needed.
The Kerr approximation suggested in Paper I is clearly not valid
here due to low M0 ∼ 1.3 M�. Such a low mass can imply high
deviations from the Kerr geometry due to the strong influence
of the NS oblateness. In principle, the related mass–angular-
momentum relation can be very different in this case from that
qualitatively implied, e.g., by the RP model, and corrections to
the quadrupole moment should be included in analogy to the
ER model and 4U 1636−53. For the other applications of the
WD, RP, RP1, and RP2 models reported here we can trust
the M − j trends following from the Kerr approximation since
the inferred masses M0 are rather high.

We justify the applicability of our results in Appendix A.3.
In general, the differences between geodesic frequencies asso-
ciated with Kerr spacetimes and those given for realistic NSs
due to their oblateness are roughly of the same order as the cor-
rections required to obtain a good match between the predicted
and observed QPO frequencies (e.g., Morsink & Stella 1999).
We illustrate however, that these differences cannot improve the
fits sufficiently for NSs with j � 0.3 and M � 1.4 M�. We
show that in HT spacetimes describing the exterior of oblate
NSs there is a degeneracy not only between the NS mass and

angular momentum but also between these quantities and the
NS quadrupole moment q. Within such “generalized degener-
acy” the frequency curves predicted by QPO models scale with
the quantities M, j , and q but the related qualitative change in
their shape is only small. Thus, our results obtained for the Kerr
spacetimes have a more general relevance except for the case of
high values of j (see Appendix A.3 for details).

6.1.2. Prospects of Eliminating the M − j Degeneracy

The M − j degeneracies implied by individual kHz QPO mod-
els can in principle be eliminated using angular momentum esti-
mates independent of the kHz QPOs. In Appendix B we subse-
quently focus on the RP model and discuss such possible elim-
ination. Based on the X-ray burst observations of Strohmayer
& Markwardt (2002) we assume that the rotational frequency
(spin) of the NS in 4U 1636−53 is around 290 Hz or 580 Hz.
Applying a few concrete NS EoS we show that the modified RP
model well matches these spins for j ∼ 0.1 or j ∼ 0.2. We also
show that a further consideration of low-frequency QPOs and
the Lense–Thirring precession mechanism within the model can
be finally crucial for fixing the value of j and challenging for
application of the concrete EoS (see illustration in Figure 7). We
note that this issue as well as modeling of kHz QPO correlations
for rapidly rotating NSs require an additional detailed treatment.
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(a) (b)

Figure 7. (a) The ambiguities of the parameters of the RP model frequency relations illustrated for the range j ∈ (0, 0.3) and q̃ ∈ (1, 8). The red curve indicates the
relation plotted for the mass M0 in the Schwarzschild spacetime. The dark blue set of curves marked as “Kerr” represents the degeneracy in the Kerr spacetimes given by
Equation (A14). The light blue set marked as “Hartle–Thorne” includes curves resulting from the generalized degeneracy in HT spacetimes given by Equation (A15).
The shadow cone denotes the range of frequency ratio R corresponding to the data for 4U 1636−53. (b) Removing the M − j degeneracy in the case of 4U 1636−53
and the RP model. The χ2 map displayed is calculated for β �= 0 while the best fits correspond to β = 0.15–0.20. The blue spot roughly indicates the combination
of mass and spin restricted when the spin frequency 290 Hz and several concrete equations of state are assumed. The red spot indicates the same but for the spin
frequency 580 Hz. The shaded region around the dashed horizontal line indicates the angular momentum j = 0.3 ± 0.05 which can be roughly expected when the
Lense–Thirring precession is assumed. The green box corresponds to a detailed consideration of a few points in the 3D frequency space (see Appendix B for details).

6.2. Resonance between m = 0 Axisymmetric
Disk-oscillation Modes

Last but not least, we can draw conclusions about the version
of the ER model examined assuming the fixed radius r = r3:2.
It well fits the data for both the sources discussed here with
a χ2/dof of the order of unity. The good fits, however, arise
only because the present model predicts a linear correlation
which has slope and intercept given by unspecified (free)
parameters. One should also note that for Circinus X-1 the model
requires additional consideration of the resonant combinational
frequencies. Moreover, application of the ER model leads to
a questionably low mass for 4U 1636−53, M � 1 M�,
while for Circinus X-1 the implied mass is on the contrary
questionably high, M � 3 M�. All these along with the results
of Urbanec et al. (2010b) suggest that if a resonance is involved
in the process of generating the NS QPOs, modes other than
those corresponding to the radial and vertical axisymmetric
oscillations should be considered.
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APPENDIX A

APPROXIMATIONS, FORMULAS, AND EXPECTATIONS

A.1. Relations for the Upper and Lower QPO Frequencies
in the RP, TD, WD, RP1, and RP2 Models

Formulas for the Keplerian, radial, and vertical epicyclic
frequency were first derived by Aliev & Galtsov (1981). In

a commonly used form (e.g., Török & Stuchlı́k 2005) they read

ΩK = F
j + x3/2

, νr = ΓΩK, νθ = ΔΩK, (A1)

where

Γ =
√

−3j 2 + 8j
√

x + (−6 + x) x

x2
,

Δ =
√

1 +
j (3j − 4

√
x)

x2
, (A2)

x ≡ r/M , and the “relativistic factor” F reads F ≡
c3/(2πGM).

Relations defining the upper and lower QPO frequencies in
terms of the orbital frequencies are given for each of the models
considered in the first column of Table 1. For the RP model, one
can easily solve these relations to arrive at an explicit formula
which relates the upper and lower QPO frequencies in units of
Hertz as (Paper I)

νL = νU

{
1 −

[
1 +

8jνU

F − jνU

− 6

(
νU

F − jνU

)2/3

− 3j 2

(
νU

F − jνU

)4/3
]1/2}

. (A3)

A similar simple evaluation of the explicit relation between
the two observed QPO frequencies is also possible for the TD
model, where we find

νU = νL

{
1 +

[
1 +

8jνL

F − jνL

− 6

(
νL

F − jνL

)2/3

− 3j 2

(
νL

F − jνL

)4/3
]1/2}

. (A4)

An apparent “asymmetry” between relations (A3) and (A4)
arises from an analogical asymmetry in the model definition
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of the observable frequencies (see Table 1). We note that in both
models, one of the two observable frequencies simply equals
the Keplerian orbital frequency, which makes the evaluation of
the explicit formula very straightforward.

For the WD, RP1, and RP2 models, the definition relations
lead to high-order polynomial equations that relate the lower
and upper QPO. In these cases we can give only a parametric
form relating νU and νL. The upper and lower QPO frequencies
for the WD model can then be expressed as

νU = 2 (1 − Γ) ΩK , νL = (2 − Γ) ΩK. (A5)

For the RP1 model they can be written as

νU = ΩKΔ , νL = (1 − Γ) ΩK, (A6)

and for the RP2 model as

νU = (2 − Δ) ΩK , νL = (1 − Γ) ΩK. (A7)

A.2. Predictive Power of the RP Model

Let us assume a non-rotating star. The radial epicyclic
frequency vanishes at ISCO, x = 6, where the orbital frequency
takes the value of

νK = νISCO = c3

12
√

6 GMπ
(A8)

and within the RP model it is

νU = νL = νISCO. (A9)

When a certain variation of the mass, δ ≡ ΔM/M , is assumed,
the point in the frequency plane given by Equation (A9) changes
its position. The corresponding square of the distance ds2

(important for the fitting of data) reads

ds 2
ISCO = νISCO

δ2

(1 + δ)2 . (A10)

For any other specific orbit inside the accretion disk (e.g., x = 8,
where the radial epicyclic frequency takes its maximal value),
the analogous change of the related data point position in the
frequency plane is always smaller, ds2 < ds 2

ISCO.
It is useful to utilize the fact that each specific orbit can

be related to a certain frequency ratio R higher than R = 1
corresponding to ISCO (e.g., for x = 8 it is R = 2). Using the
relation between x and R (e.g., Török et al. 2008c), one can find
that

ds2 = ds 2
ISCO × P, (A11)

where

P = (R2 + 1)(2R − 1)3

2R8
. (A12)

The quantity P = P(R) reads P = 1 for R = 1 and strongly
decreases with increasing R. This naturally illustrates that the
predictive power of the model is high only for orbits close to
ISCO. For instance, for the maximum of the radial epicyclic
frequency where R = 2, it is roughly P = 0.25.

We note that in this subsection we neglected the influence
of the NS spin for simplicity. Calculating P for a non-zero j
is less straightforward and does not bring any new interesting
information.

A.3. Generalized Degeneracy

As recalled in Section 2, the frequency curves predicted by
the model (and other kHz QPO models) scale with the NS mass
and angular momentum, but do not change their shape much
when j � 0.5. This was explored in detail assuming the Kerr
spacetimes. The exterior of a rotating NS is in general well
described by the HT spacetimes which are determined by the
NS mass M, angular momentum j, and a quadrupole moment q
reflecting the NS oblateness. One can ask whether there can be
a “generalized degeneracy” related to all these three quantities
similar to those related just to M and j in the Kerr spacetimes. We
briefly attempt to resolve this issue using formulas for epicyclic
frequencies in HT spacetimes derived by Abramowicz et al.
(2003a).

The orbital frequency at a marginally stable circular orbit
increases with increasing angular momentum j while it de-
creases with increasing quadrupole moment q. Thus, following
Appendix A.2 of Paper I, we can expect that the eventual gen-
eralized degeneracy can, to first order in q and second order in
j, be expressed as

M ∼ M0(1 + k1 j + k2 j 2 − k3 q). (A13)

In the limit of q̃ = 1, where q̃ ≡ q/j 2 is the so-called
“Kerr parameter”, relation (A13) has to merge with the mass
spin relation derived for the Kerr spacetimes. This relation is
represented by Equation (2) which, assuming whole frequency
curves, reads

M ∼ M0[1 + 0.7(j + j 2)]. (A14)

Therefore we choose k1 = 0.7 and k2 = k1 + k3. Then only k3
remains as a “tunable” parameter.

We searched for a value of k3 providing the eventual gener-
alized degeneracy. For a particular choice of k3 = 0.32,

M = M0(1 + 0.7j + 1.02j 2 − 0.32q), (A15)

we found results in full analogy to those that we had previously
obtained for the Kerr spacetimes. This finding is illustrated in
Figure 7(a). The figure is plotted for j ∈ (0, 0.3) and q̃ ∈ (1, 8).
Clearly, for any curve drawn for a particular combination
of M, j, and q there is a nearly identical curve drawn for
the Schwarzschild spacetime given by Equation (A15). Thus,
consideration of NS oblateness cannot improve the poor quality
of fits of models to the data within the limits of j and q assumed
for the figure. These limits correspond to almost any NS modeled
using the usual EoS for the mass M > 1.4 M� and spin
frequencies up to 600 Hz (Lattimer & Prakash 2001, 2007).

Considering the above facts, we can summarize the findings
as follows: the results on M − j relations obtained for the Kerr
spacetimes have rather general validity and NS oblateness could
only cause some correction to the slope of a particular M − j
relation. The only exceptions exceeding the framework of the
work presented are represented by the cases of j � 0.3,
M < 1.4 M�, or some unusual NS models that have to be
treated in detail assuming concrete EoS.

APPENDIX B

REMOVING DEGENERACY IN THE CASE
OF THE RP MODEL AND 4U 1636−53

For the atoll source 4U 1636−53 there is good evidence on
the NS spin frequency based on X-ray burst measurements.
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Depending on the (two- or one-) hot-spot model consideration,
the spin frequency νS reads either νS ∼ 290 Hz or νS ∼
580 Hz (Strohmayer & Markwardt 2002). Thus, one can, in
principle, infer the angular momentum j and remove the M − j
degeneracies related to the individual twin peak QPO models.

In Figure 7 we illustrate the potential of such an approach
requiring a complex usage of various versions of a detailed
ultra-dense matter description. The figure is made for the non-
geodesic version of the RP model based on Equation (29)
with β �= 0. It includes a χ2 map resulting from the fitting
of 4U 1636−53 data with the model together with the M − j
relations inferred from the equalities νS = 290 Hz or νS =
580 Hz. These M − j relations that depend on ultra-dense matter
properties were calculated using the approach of Hartle (1967),
Hartle & Thorne (1968), Chandrasekhar & Miller (1974), Miller
(1977), and Urbanec et al. (2010a). They assume the same set of
several EoS as we used in Paper I, namely SLy 4 (Rikovska Stone
et al. 2003), APR (Akmal et al. 1998), AU-WFF1, UU-WFF2,
and WS-WFF3 (Wiringa et al. 1988; Stergioulas & Friedman
1995).

Comparing the χ2 map to the M − j relations based on our
choice of EoS we can conclude that the parameters of the NS
implied by the model must be either j ∼ 0.11 and M ∼ 1.9 M�,
or j ∼ 0.22 and M ∼ 2 M�. In panel (b) of Figure 7 we can
check that in both cases the quality of fit to twin peak QPO
data is acceptable (the best fits were obtained for the value of
β ∼ 0.17).

B.1. Adding Low-frequency QPOs

The RP model associates the observed low-frequency QPOs
to the Lense–Thirring precession that occurs at the same radii
as the periastron precession crucial for the high-frequency part
of the model. It is then expected that their frequencies ν
 equal
the Lense–Thirring precession frequency,

ν
 = νLT. (B1)

Naturally, the value of νLT depends more strongly on the angular
momentum j than on the concrete radius r, since it vanishes
for j → 0 at any radius. Thus, within the framework of the
RP model, it represents a sensitive spin indicator (Stella &
Vietri 1998a, 1998b; Morsink & Stella 1999). Although in this
paper we focus on the high-frequency QPOs, it is interesting to
mention this consideration, especially because of the relation
to the above-mentioned implications of briefly X-ray burst
measurements.

There are several published observational works on QPOs
in atoll sources including data points in the three-dimensional
(3D) frequency spaceS = {ν
, νL, νU}. For instance, Jonker et al.
(2005) reported clear measurements of low-frequency QPOs in
4U 1636−53 as well as their relation to the high-frequency
part of the PDS. For the PDS related to the middle part of the
frequency correlation,

[νL, νU ] = [700–800 Hz, 1000–1100 Hz], (B2)

the frequencies ν
 were approximately around

ν

.= 42 Hz. (B3)

For the PDS related to the upper part of the frequency correla-
tion,

[νL, νU ] = [800–850 Hz, 1100–1150 Hz], (B4)

the frequencies ν
 were around

ν

.= 43.5 Hz. (B5)

Assuming these frequency intervals we can apply the equalities

νU = νK, νL = νRP = νK−νr and ν
 = νLT = νK−νθ . (B6)

For the application we consider Equation (29) with β = 0.17
which provides acceptable fits to the twin peak QPOs. The
spin j is then fixed just by the ratio between the observed
frequencies (B6). Consequently we find that j must be about
j = 0.285−0.3. Moreover, when using the measured frequency
values, the relations (B6) determine both M and j just for a single
point in the 3D frequency space S. Using this fact and the values
of Jonker et al. (2005) we find that M = (2.0 − 2.2) M� for
j = 0.285 − 0.3.

The resulting values of M and j are marked in Figure 7 by
the green box. Note, however, that the consideration needs to be
further expanded for a larger set of data and some χ2 mapping in
the 3D frequency space S should be done. This can be somewhat
complicated by the fact that low-frequency QPOs are, in general,
broader than the kHz features. In addition, the quadrupole
momentum influence on νLT could be overestimated due to the
Kerr geometry approximation considered here. Nevertheless,
assuming all these uncertainties we can still expect from the
above numbers that a further detailed consideration should
confirm the value of j roughly inside the interval

jLT = 0.3 ± 0.05. (B7)

Figure 7 finally integrates both the implications of X-ray
burst measurements and the Lense–Thirring precession model
for low-frequency QPOs. We can see that an EoS relatively
distant from those which we consider here could be needed
in order to match both phenomena and fix the NS spin. This
challenging issue clearly requires further future work joining
data analysis in the field of 3D frequency space and modeling
the detailed influence of the NS EoS.
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Bakala, P., Urbanec, M., Šrámková, E., Stuchlı́k, Z., & Török, G. 2012, Class.

Quantum Grav., 29, 065012
Barret, D., & Boutelier, M. 2008, New Astron. Rev., 51, 835
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ABSTRACT

Resonant Switch (RS) model has recently been proposed as an alternative to the standard mod-
els of twin-peak high-frequency quasi-periodic oscillations (HF QPOs) observed in low-mass X-ray
binaries containing a neutron star. The model assumes switch of twin oscillations at a resonant point,
where frequencies of the upper and lower oscillationsνU and νL become commensurable and one
pair of the oscillating modes (corresponding to a specific model of HF QPOs) changes to some other
pair due to non-linear resonant phenomena. We test the RS model for the atoll source 4U 1636–53,
where we assume two resonant points observed at frequency ratios νU : νL = 3 : 2 , 5 : 4 , by fitting
the pairs of the oscillatory modes to the observed data in theregions related to the resonant points.
Among acceptable variants of the RS model the most promisingare those combining the relativistic
precession (RP) and the total precession (TP) frequency relations or their modifications. The preci-
sion of the fits is shown to be strongly increased in comparison to fits realized by individual pairs
along the whole data range. We demonstrate that theχ2 test is significantly improved. Fitting of the
HF QPO data in the source 4U 1636–53 by the RP1–RP variant of the RS model gives the best results
and implies that the neutron star mass and dimensionless spin areM ≈ 2.2 M⊙ anda≈ 0.27.

Key words: Accretion, accretion disks – Stars: neutron – X-rays: binaries

1. Introduction

The Galactic low mass X-ray binaries (LMXBs) containing black holes or neu-
tron (quark) stars demonstrate quasiperiodic oscillations (QPOs) of X-ray bright-
ness at low-(Hz) and high-(kHz) frequencies (see,e.g., Remillard and McClintock
2006, van der Klis 2006, 2000, Barretet al.2005a). Since the high frequencies are
close to the orbital frequency of the marginally stable circular orbit representing
the inner edge of Keplerian disks orbiting neutron stars, the strong gravity effects
are expected to be relevant in explaining the HF QPOs (Kluźniak 1998).

The HF QPOs in neutron star (NS) systems are often demonstrated as two si-
multaneously observed pairs of peaks (twin peaks) in the Fourier power spectra,
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corresponding to oscillations at the upper and lower frequencies (νU ,νL) . The
twin peaks at the upper and lower frequencies substantiallychange over time (in
one observational sequence). Sometimes only one of the frequencies is observed
and evolves and the other disappears, but it is not clear if this effect is related to
detectability of the oscillations by recent observationaltechnology (Belloniet al.
2007, Boutelieret al. 2010). Nevertheless, detection of twin-peak HF QPOs is
strongly influenced by definition of the observational levelof the HF QPOs and we
can expect some improvements in detection of HF QPOs by planned high-precision
X-ray satellite observatories, especially by the LOFT (Feroci et al.2012).

Most of the twin HF QPOs in the so-called atoll sources (van der Klis 2006)
have been detected at lower frequencies 600–800 Hzvs. upper frequencies 900–
1200 Hz, demonstrating a clustering of the twin HF QPOs frequency ratio around
3 : 2. This clustering (Abramowiczet al.2003, 2005b, Belloniet al.2007, Töröket
al. 2008abc, Boutelieret al. 2010) indicates some analogy to the black hole (BH)
case where twin peaks with fixed pair of frequencies at the ratio 3 : 2 are usually
observed and can be explained by the internal non-linear resonance of oscillations
with geodetical radial and vertical epicyclic frequencies(Török et al. 2005). It is
probable that a 3 : 2 resonance plays a significant role also inthe atoll sources
containing neutron stars. However, this case is much more complicated, as the fre-
quency ratio, although concentrated around 3 : 2, falls in a much wider range than
in the BH systems (Belloniet al.2005, Töröket al.2005, Abramowiczet al.2005a,
Török et al.2008c, Török 2009, Boutelieret al.2010, Wanget al.2013, 2014). It
remains controversial whether in the atoll NS sources the peak in distribution of the
twin-peak frequency ratiosνU/νL at 3 : 2 is physical (Montero and Zanotti 2012).

In fact, a multi-peaked distribution in the frequency ratios has been observed
(Belloni et al. 2005, Stuchlíket al. 2007, Töröket al. 2008c),i.e., more than one
resonance could be realized if a resonant mechanism is involved in generating the
neutron star HF QPOs. For some atoll NS sources the upper and lower HF QPO
frequencies can be traced along the whole observed range, but the probability to
detect both QPOs simultaneously increases when the frequency ratio is close to
ratio of small natural numbers, namely 3 : 2, 4 : 3, 5 : 4 – this has been observed in
six atoll sources: 4U 1636–53, 4U 1608–52, 4U 0614+09, 4U 1728–34, 4U 1820–
30, 4U 1735–44 (Török 2009, Boutelieret al. 2010). The analysis of root-mean-
squared-amplitude evolution in the group of six atoll sources shows that the upper
and lower HF QPO amplitudes equal each other and alter their dominance while
passing rational frequency ratios corresponding to the datapoints clustering (Török
2009). Such an “energy switch effect” can be well explained in the framework
of non-linear resonant orbital models as shown in Horáket al. (2009). Moreover,
the analysis of the twin-peak HF QPO amplitudes in the atoll sources 4U 1636–
53, 4U 1608–52, 4U 1820–30, and 4U 1735–44 indicates a cut-off at resonant
radii corresponding to the frequency ratios 5 : 4 and 4 : 3 respectively, implying
a possibility that the accretion disk inner edge is located at the innermost resonant
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radius rather than at the innermost stable circular geodesic (ISCO, Stuchlíket al.
2011). The situation is slightly different for the Z-sources where the twin-peak
frequency ratios alter strongly again but they are clustering close to 2 : 1, and 3 : 1
ratios as demonstrated in the Z-source Circinus X-1 (Boutloukoset al.2006). Then
the resonant radii are expected at slightly larger distancefrom the ISCO than in the
atoll sources (Töröket al.2010).

The evolution of the lower and upper twin HF QPOs frequenciesin the atoll and
Z-sources suggests (a very rough) agreement of the data distribution with so-called
hot spot models of HF QPOs, especially with the relativisticprecession model pre-
scribing the evolution of the upper frequency byνU = νK and the lower frequency
by νL = νK − νr (Stella and Vietri 1999, 1998). In all of the acceptable models
the frequency differenceνU − νL has to decrease with increase of the lower and
upper frequencies, in accord with trends given by the observational data (Belloni
et al. 2007, Boutelieret al. 2010). This qualitative property of the observational
data excludes the simple model of epicyclic oscillations with νU = νθ andνL = νr

(Urbanecet al. 2010b) that works quite well in the case of HF QPOs in LMXBs
containing black holes (Töröket al.2005).

The νU/νL frequency relations, given by a variety of the relevant frequency-
relation models, can be fitted to the observational data for the atoll and Z-sources
containing neutron stars,e.g., data determined for the atoll source 4U 1636–53
(Barretet al. 2005a, Töröket al. 2008abc), or the Z-source Circinus X-1 (Bout-
loukos et al. 2006). The parameters of the neutron star spacetime can be then
determined due to the fitting procedure. The rotating neutron stars are described
quite well by the Hartle–Thorne geometry characterized by three parameters: mass
M , internal angular momentumJ, and quadrupole momentQ, or by dimensionless
parametersa= J/M2 (spin) andq= QM/J2 (dimensionless quadrupole moment)
(Hartle and Thorne 1968). In the special case whereq ≈ 1, the Hartle–Thorne
geometry reduces to the well known and well studied Kerr geometry that is con-
venient for relativistic calculations in a strong gravitational field regime because of
the simplicity of relevant formulae. It has recently been shown that near-maximum-
mass neutron (quark) star Hartle–Thorne models constructed for any given equation
of state implyq ≈ 1, and the Kerr geometry is quite correctly applicable in such
situations instead of the Hartle–Thorne geometry (Urbanecet al. 2013, Töröket
al. 2010). The Keplerian (orbital) frequencyνK , the vertical epicyclic frequency
νθ , and the radial epicyclic frequencyνr take in the Kerr spacetime the form
(e.g., Aliev and Galtsov 1981, Perezet al. 1997, Katoet al. 1998, Stella and Vi-
etri 1998, Török and Stuchlík 2005, Stuchlík and Schee 2012)

ν2
θ = αθ ν2

K , ν2
r = αr ν2

K , (1)

νK =
1
2π

(
GM

r3
G

)1/2 1

x3/2+a
=

1
2π

(
c3

GM

)
1

x3/2+a
, (2)
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αθ = 1− 4a

x3/2
+

3a2

x2 , (3)

αr = 1− 6
x
+

8a

x3/2
− 3a2

x2 (4)

wherex= r/(GM/c2) is the dimensionless radius, expressed in terms of the grav-
itational radius.

Assuming the geodesic orbital and epicyclic frequencies determined for the
Kerr geometry, the fitting procedure applied to the relativistic precession model
of the frequency-relation evolution for the Z-source Circinus X-1 implies mass–
spin relationM(a) = M0

[
1+k(a+a2)

]
with M0 ≈ 2.2 M⊙ and k ≈ 0.5 rather

than concrete values of the neutron star parametersM and a (Török et al. 2010).
The same mass–spin relations, but with different values of the Schwarzschild (no-
rotation) massM0 ≈ 1.8 M⊙ and the constantk ≈ 0.75, were obtained for the
atoll source 4U 1636–53 (Töröket al. 2012). Quality of the fitting procedure is
very poor for the atoll source 4U 1636–53 (Töröket al.2012). Similar very bad fit
of observational data was found by Linet al. (2011) for the atoll source 4U 1636–
53 and Z-source Sco X-1 also for some models of the HF QPOs having the fre-
quency relations based on phenomena of non-geodesic origin(Miller et al. 1998,
Osherovich and Titarchuk 1999, Zhang 2004, Zhanget al. 2006, Chakrabartiet
al. 2008, Mukhopadhyay 2009, Shi and Li 2009, Shi 2011, Mukherjee and Bhat-
tacharyya 2012).

The disagreement of the data distribution and their fitting by the frequency-
relation models based on the assumption of the geodesic character of the oscillatory
frequencies caused attempts to find a correction of a non-geodesic origin reflecting
some important physical ingredients,e.g., influence of the magnetic field of the
neutron star onto slightly charged innermost parts of the disk (Bakalaet al. 2012,
2010, Ková̌r et al. 2008), of thickness of non-slender oscillating tori (Rezzolla et
al. 2003, Blaeset al. 2007, Straub and Šrámková 2009) or of its stringy origin
(Stuchlík and Kološ 2012ab, Cremaschini and Stuchlík 2013,Kološ and Stuchlík
2013, Stuchlík and Kološ 2014). Another possible modifications are related to the
models developed for braneworld compact objects (Kotrlováet al. 2008, Stuchlík
and Kotrlová 2009, Schee and Stuchlík 2009, Alievet al.2013). Such modifications
of the frequency-relation models could make the quality of the fitting procedure
much better, as shown in Töröket al. (2012) for a simple toy model with one
additional free parameter.

On the other hand, it is important to consider another possibility to improve the
data fitting that keeps the relevance of the frequencies governed by the geodesic
orbital and epicyclic motion, namely the Resonant Switch (RS) model considering
switch of the frequency relations at a resonant radius (Stuchlík et al.2012, 2013).
The RS model keeps the assumption of only two free parameters, namely the mass
and the dimensionless spin of the central neutron star. The RS model has been
applied in the case of the atoll source 4U 1636–53, giving forall considered fre-
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quency relations relatively extended restrictions on the mass and spin parameters
of the 4U 1636–53 neutron star (Stuchlíket al.2012). Here we test the RS model
for this atoll source by fitting the observational data by thecombinations of the
frequency relations that are predicted by the RS model as acceptable due to the
neutron star structure theory,i.e., having acceptable values of the mass and spin pa-
rameters of the neutron star at the atoll source 4U 1636–53 (Stuchlík et al. 2012).
The RS model can be considered to be relevant, if substantialimprovement of the
fitting of the observational data occurs for some of the frequency-relation combina-
tions. Moreover, we expect also substantial improvement oflimits on the neutron
star parametersM anda due to the fitting procedure.

2. Resonant Switch Model of HF QPOs Observed in 4U 1636–53 Atoll
System

The RS model of twin-peak HF QPOs assumes switching of the twin oscil-
latory modes creating sequences of the lower and upper HF QPOs at a resonant
point. The non-linear resonant phenomena can cause excitation of a new oscilla-
tory mode (or two new oscillatory modes) and vanishing of oneof the previously
acting modes (or both the previous modes). Two resonant points at the disk radii
xout and xin are assumed, with observed frequenciesνout

U , νout
L and νin

U , νin
L , be-

ing in commensurable ratiospout = nout : mout and pin = nin : min ; observations
requireνin

U > νout
U and pin < pout. In the region covering the resonant point atxout

the twin oscillatory modes with the upper (lower) frequencyare determined by the
function νout

U (x;M,a) (νout
L (x;M,a)). Near the inner resonant point atxin different

oscillatory modes given by the frequency functionsνin
U (x;M,a) and νin

L (x;M,a)
occur. All the frequency functions are assumed to be combinations of the orbital
and epicyclic frequencies of the geodesic motion in the Kerrbackgrounds. Such an
assumption is correct for very compact (and very massive) neutron stars or strange
stars (Urbanecet al. 2013), but for neutron (strange) stars having small compact-
ness the Kerr geometry cannot be correct and the Hartle–Thorne geometry must be
used to describe the external spacetime (Gondek-Rosińskaet al.2014).

The frequency-relation functionsνU/νL have to meet the observationally given
resonant frequencies determined by the energy switch effect, i.e., by the alteration
of the rms-amplitude dominance of the oscillations on the lower and upper fre-
quencies of the twin HF QPOs that occurs at the resonance points where the fre-
quency ratio takes rational values (Török 2009). Independence of the frequency ra-
tio on the mass parameterM implies that the conditionsνout

U (x,a) : νout
L (x,a)= pout,

νin
U (x,a) : νin

L (x,a) = pin determine relations for the spina in terms of the dimen-
sionless radiusx and the resonant frequency ratiop. They can be expressed in the
form aout(x, pout) andain(x, pin) , or in an inverse formxout(a, pout) andxin(a, pin) .
At the resonant points, the conditions

νout
U = νout

U (x;M,a) , νin
U = νin

U (x;M,a) (5)
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are satisfied along the functionsMout
pout

(a) andMin
pin
(a) obtained by using the func-

tions xout(a, pout) and xin(a, pin) . The parameters of the neutron (quark) star are
then given by the condition

Mout
pout

(a) = Min
pin
(a) (6)

that determinesM anda with precision given by the error occurring in determina-
tion of the resonant frequencies by the energy switch effect– for details see Stuchlík
et al. (2012).

2.1. Frequency Relations Used in the RS Model

We consider here the frequency relations related to the so-called hot spot mod-
els of HF QPOs, or models of accretion disk oscillations. In both cases we assume
that the oscillatory frequencies are governed by the geodetical orbital and epicyclic
motion. We thus take into account the widely discussed (R)elativistic (P)recession
(RP) model prescribing the evolution of the upper frequencyby νU = νK and
the lower frequency byνL = νK − νr (Stella and Vietri 1999, 1998) and a simi-
lar (T)otal (P)recession (TP) model (Stuchlíket al. 2007), where the evolution of
the upper frequency is given byνU = νθ and the lower frequency byνL = νθ−νr .
We consider also their modifications where the upper frequency is modified by in-
terchange (frequency relations RP1 – Bursa 2005, and TP1) orby adding the beat
frequency (RPB, and TPB). We further consider also the (T)idal (D)isruption (TD)
model (̌Cadežet al.2008, Kostíc et al.2009), and the (W)arped (D)isc oscillations
(WD) model (Kato 2004, 2008).

The frequency relations corresponding to these models are summarized in Ta-
ble 1. For each of the frequency relations under consideration the frequency reso-
nance functions and the resonance conditions determining the resonant radiixn:m(a)
are given in Stuchlíket al. (2012) where all the details can be found.

T a b l e 1

Frequency relations corresponding to individual QPO models

Model Relations

RP νL = νK −νr νU = νK

RP1 νL = νK −νr νU = νθ
RPB νL = νK −νr νU = νK +νr

TP νL = νθ −νr νU = νθ
TP1 νL = νθ −νr νU = νK

TPB νL = νθ −νr νU = νθ +νr

TD νL = νK νU = νK +νr

WD νL = 2(νK −νr) νU = 2νK −νr
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2.2. Restrictions on the Mass and Spin due to Theory of Neutron Star Struc-
ture

Predictions of the RS model have to be confronted with theoretical limits on
the mass and spin of neutron (quark) stars. The restriction on the neutron star mass
reads

M < 2.8 M⊙ (7)

(see,e.g., Mütheret al. 1987, Müller and Serot 1996, Akmal and Pandharipande
1997, Akmalet al.1998, Postnikovet al.2010, Urbanecet al.2010a). The upper
limit on the neutron star spin readsamaxNS≈ 0.7 as demonstrated in Lo and Lin
(2011).

For the quark stars the maximal mass is expected to be somewhat smaller in
comparison with the neutron stars because of softer equations of state assumed in
modeling the quark stars, but masses aroundMmaxQ≈2 M⊙ are allowed (e.g., Glen-
denning 2000, Lo and Lin 2011). However, a substantial difference occurs in the
limit on maximal spin, since even slightly superspinning states of quark stars with
amaxQ≥ 1, exceeding the black hole limita = 1, have recently been reported by
Lo and Lin (2011). Such a sharp difference between the limitson the maximal spin
of neutron and quark stars can be explained by the strong nuclear force acting in
binding the strange stars, while no such effect can occur in the case of neutron stars.

In the Hartle–Thorne model of rotating neutron stars the spin of the star is re-
lated to its rotational frequency (Hartle and Thorne 1968, Chandrasekhar and Miller
1974). The rotational frequency of the neutron star at the atoll source 4U 1636–53
has been observed atfrot = 580 Hz (or frot = 290 Hz, if we observe doubled radiat-
ing structure, Strohmayer and Markwardt 2002). Such a rotational frequency is low
in comparison with the mass-shedding frequency (fmass−shedding≈ 1100 Hz), and
the Hartle–Thorne model can be applied quite well, predicting spins significantly
lower than the maximally allowed spin. We have checked that the Hartle–Thorne
model implies for a wide variety of realistic equations of state used in Urbanecet
al. (2013) the spin in the range

0.1< a< 0.4. (8)

We assume that this restriction has to be relevant for acceptable combinations of
frequency relations in their predictions related to the neutron star spin.

2.3. Predictions of the RS Model for the Source 4U 1636–53

The observational data from the atoll source 4U 1636–53 clearly demonstrate
possible existence of two “resonant points” where the energy switch effect occurs.
The RS model assumes that the switch of the frequency relations occurs at the
outer resonant point. The results of Török (2009) give the resonant frequencies de-
termined by the energy switch effect that are in accord with those given by crossing
of observational data by the lines of constant frequency ratios 3 : 2 and 5 : 4 as
given in the standard papers (Barretet al. 2005a, Belloniet al. 2007). However,
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the precision of determination of the upper and lower frequencies at the outer and
inner resonant points due to the energy switch effect is rather low.

In the framework of the RS model the mass and spin parameters,M and a,
of the neutron (quark) star at the 4U 1636–53 source were determined for a large
variety of the frequency relationsνU/νL in Stuchlíket al. (2012). The ranges of
the neutron star mass and spin of the 4U 1636–53 source allowed by the procedure
of the RS model are summarized in Table 1 of Stuchlíket al. (2012) for all the
frequency pairs constituted by the simple combinations of the geodetical orbital
and epicyclic frequencies. We see that the range of the mass and spin parameters
of the neutron star determined by the RS model due to the energy switch effect at
the resonant points is very large. The mass and spin estimates presented in Table 1

T a b l e 2

Intervals of mass and spin of the neutron star in the atoll source 4U 1636–53 implied by the
procedure of the RS model

Combination of models spina massM [M⊙]

RP(3 : 2) − TP1(5 : 4) 0.27–0.74 2.28–4.20
RP(3 : 2) − TPB(5 : 4) 0.18–0.65 2.24–3.45
RP1(3 : 2)− RP(5 : 4) 0.14–0.42 1.98–2.49
RP1(3 : 2)− TP(5 : 4) 0.25–0.67 2.11–2.94
RP1(3 : 2)− TP1(5 : 4) 0.10–0.34 1.94–2.36
TP(3 : 2) − RP(5 : 4) 0.29–0.70 2.25–3.57
TP(3 : 2) − TP1(5 : 4) 0.17–0.52 2.07–2.93
TP1(3 : 2)− RPB(5 : 4) 0.18–0.67 2.30–4.11
TP1(3 : 2)− TPB(5 : 4) 0.08–0.38 2.10–2.70
WD(3 : 2) − TD(5 : 4) 0.00–0.69 2.14–4.22
TD(3 : 2) − TD(5 : 4) 0.00–0.69 2.14–4.22

Note that the model WD(3 : 2) gives identical
solution as TD(3 : 2).

of Stuchlíket al. (2012) are compared to the restrictions implied by the theoretical
models of neutron stars and the observed rotational frequency of the neutron star at
4U 1636–53. Some combinations of the frequency relations applied at the resonant
points are clearly disfavored, predicting mass and spin ranges that are completely
out of the ranges given by the theoretical restrictions (forexample the combination
of the RP and TD relations). Some combinations cover the theoretically allowed
region partially (e.g., for combination of the RP and TP frequency relations) or
completely (e.g., for combination of the RP1 and TP1 frequency relations). The
combinations of the frequency relations that are at least atpartial agreement with
the theoretical limits are given in Table 2 of the present paper and are further tested
by fitting the observational data to the related frequency relations in the regions of
observational data separated by the outer resonant point.
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3. Fitting the Twin-Peak HF QPO Data by the Switched Twin Frequency
Relations

According to the RS model, the fitting procedure is separatedinto two seg-
ments determined by the resonant points that has been deduced for the atoll source
4U 1636–53 by the energy switch effect (Török 2009). These two segments of
observational data are separated by the outer resonant point corresponding to the
frequency ratio 3 : 2. Therefore, for the data with frequencyratio larger than 3 : 2,
corresponding to radii larger than the outer resonant radius, the first frequency rela-
tion of the combination under consideration is used for the fitting procedure, while
for the data with frequency ratio smaller than 3 : 2, at radii between the outer and
inner resonant radius, the second frequency relation of thecombination is used in
the fitting procedure.

For analysis presented in this paper we use the HF QPO data in the 4U 1636–53
source taken from Barretet al. (2005ab). In the fitting procedure we apply those
switched twin frequency relations predicted by the RS modelthat are acceptable
due to the neutron (quark) star structure theory as found in Stuchlík et al. (2012).
All the twin frequency relations considered in our testing are presented in Table 2
where the ranges of values of the massM and spina of the neutron star predicted
by the RS model are explicitly given. In fitting the observational data we use the
standard least-squares (χ2) method (e.g., Presset al.2007). There is

χ2 ≡
m

∑
n=1

∆2
n, ∆n = Min

(
ln,p
σn,p

)pISCO

p∞

(9)

whereln,p is the length of a line between thenth measured data point[νL(n),νU(n)]
and a point[νL(p),νU(p)] belonging to the relevant frequency curve of the model.
The quantityσn,p equals the length of the part of this line located within the error
ellipse around the data point. Theχ2 test was applied solely to the RP, TP and TD
frequency relations along the whole range of the observational data, however, the
results were quite unsatisfactory, givingχ2/dof≈ 16 as demonstrated in Töröket
al. (2012).

We use the pairs of the frequency relations of the RS model in the regions of
observational data related to the corresponding resonant points. We look first for
the quality of the fitsχ2 in the M−a plane. For each value ofM from the interval
allowed by the RS model we find related spina implying minimal value ofχ2

for given M – we find a function giving “local” best fitsMlbf(a) . Then we look
for the “global” best fitMbf represented by the minimal value ofχ2 along the
function Mlbf(a) . We then find the neutron star mass as the mass corresponding to
χ2

min(Mlbf(a)) . The error of the neutron star mass is given by∆χ2 = 2 around the
χ2

min(Mlbf(a)) . Using the functionMlbf(a) , we determine the neutron star spina
and the related error.

The results of the fitting procedure are presented in Fig. 1 for the combinations
of the frequency relations RP1–RP, RP1–TP1, and RP1–TP, in Fig. 2 for the com-
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(a) RP1(3 : 2) – RP(5 : 4)
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(b) RP1(3 : 2) – TP1(5 : 4)
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(c) RP1(3 : 2) – TP(5 : 4)
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Fig. 1. Results of the fitting the data of twin-peak HF QPOs in the atoll source 4U 1636–53 by the
procedure of the RS model for the combinations of the RP1–RP(a), RP1–TP1(b), and RP1–TP(c)
frequency relations.Left panel: The χ2 dependence onM and a. The red line indicates the bestχ2

for a fixed M (i.e., the function giving “local” best fitsMlbf(a) ). Right panel: Profile of the lowest
χ2 as a function of the parameterM , constructed for the parametera corresponding to the best fit
obtained for the given combination of frequency relations.Thick blue vertical lines give mean value
of M as determined by the RS model from the frequency ratio governed by the energy switch effect.
The gray region corresponds to the precision of the fit (χ2 ≤ χ2

min±2).

binations of the frequency relations TP–RP, TP–TP1, and RP–TP1, in Fig. 3 for the
combination of the frequency relations WD–TD and TD–TD, andin Fig. 4 for the
combinations of the frequency relations RP–TPB, TP1–RPB, TP1–TPB.

The best fits and the corresponding mass and spin parameters of the neutron
(quark) star located in the 4U 1636–53 source are presented in Table 3, along with
related errors in determining mass and spin of the neutron star. The best fitχ2 = 55
occurs for two frequency pairs. One of them (TP–RP) is excluded because of too
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(a) TP(3 : 2) – RP(5 : 4)
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(b) TP(3 : 2) – TP1(5 : 4)
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(c) RP(3 : 2) – TP1(5 : 4)
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Fig. 2. Results of the fitting the data of twin-peak HF QPOs in the atoll source 4U 1636–53 by the
procedure of the RS model for the combinations of the TP–RP(a), TP–TP1(b), and RP–TP1(c)
frequency relations.Left panel: The χ2 dependence onM and a. The red line indicates the best
χ2 for a fixed M (the functionMlbf(a) ). Right panel: Profile of the lowestχ2 as a function of the
parameterM , constructed for the parametera corresponding to the best fit obtained for the given
combination of frequency relations. Thick blue vertical lines give mean value ofM as determined
by the RS model from the frequency ratio governed by the energy switch effect. The gray region
corresponds to the precision of the fit (χ2 ≤ χ2

min±2).

high mass and spin predicted (M ≈ 2.87 M⊙ , a ≈ 0.52). The other one (RP1–
RP) predicts the parameters (M ≈ 2.20 M⊙ , a ≈ 0.27) that are quite acceptable
by the neutron star theory and can be considered as the best prediction of the RS
model. The second best fit withχ2 = 61 occurs for the frequency pair RP1–TP1
and predicts neutron star parameters that are again acceptable by the theory (M ≈
2.12 M⊙ , a ≈ 0.20). For the best fits we present in Fig. 5 the pairs of relevant
frequency relations RP1–RP and RP1–TP1 related to the observational data of the
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(a) WD(3 : 2) – TD(5 : 4)
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(b) TD(3 : 2) – TD(5 : 4)
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Fig. 3. Results of the fitting the data of twin-peak HF QPOs in the atoll source 4U 1636–53 by
the procedure of the RS model for the combinations of the WD–TD (a) and TD–TD(b) frequency
relations.Left panel: The χ2 dependence onM anda. The red line indicates the bestχ2 for a fixed
M (the functionMlbf(a) ). Right panel: Profile of the lowestχ2 as a function of the parameterM ,
constructed for the parametera corresponding to the best fit obtained for the given combination of
frequency relations. Thick blue vertical line gives mean value of M as determined by the RS model
from the frequency ratio governed by the energy switch effect. The gray region corresponds to the
precision of the fit (χ2 ≤ χ2

min±2).

twin HF QPOs in the source 4U 1636–53 as given in Töröket al. (2012). We can
see that the distribution of the observational data probably excluded obtaining of
betterχ2

min in comparison to those obtained by using the RS model.
We can also state using Figs. 1–4 that for the best fits of mass parameterM

the value ofMbf is close to the mean value of the mass estimate given by the RS
model with frequency ratios determined by the energy switcheffect as represented
by the solid vertical lines in Figs. 1–4. Notice that the bestfit values ofMbf are
always shifted to the left of the mean value given by the energy switch effect, with
exception of the fits constructed for the frequency relationcontaining in the upper
frequency the beat frequency corresponding to the radial epicyclic frequency. We
expect that the shift is caused by the fact that the inner resonant point corresponds
to the innermost radius of the Keplerian disk, as suggested in Stuchlíket al.(2011).
Therefore, the data at the inner resonant point are more restricted than those at the
outer resonant point.

Our results have to be compared to the detailed theoretical models of neu-
tron stars based on a large variety of equations of state in the framework of the
Hartle–Thorne approach describing slowly rotating neutron stars that is quite rele-
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(a) RP(3 : 2) – TPB(5 : 4)
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Fig. 4. Results of the fitting the data of twin-peak HF QPOs in the atoll source 4U 1636–53 by the
procedure of the RS model for the combinations of the RP–TPB(a), TP1–RPB(b), and TP1–TPB
(c) frequency relations.Left panel: The χ2 dependence onM and a. The red line indicates the best
χ2 for a fixed M (the functionMlbf(a) ). Right panel: Profile of the lowestχ2 as a function of the
parameterM , constructed for the parametera corresponding to the best fit obtained for the given
combination of frequency relations. Thick blue vertical lines give mean value ofM as determined
by the RS model from the frequency ratio governed by the energy switch effect. The gray region
corresponds to the precision of the fit (χ2 ≤ χ2

min±2).

vant for the 4U 1636–53 neutron star with observationally given rotation frequency
of 580 Hz (or 290 Hz, Urbanecet al.2013, Boshkayevet al.2013, Chandrasekhar
and Miller 1974, Hartle and Thorne 1968). We can expect that our results could
imply, then, relevant restrictions on the applicability ofthe equations of state in this
particular source.

We have to check in our study, if the RS model implies significant improvement
in fitting the observational data from the point of view of theprobabilistic theory.
For these purposes, the so calledF -test is the most convenient tool.
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T a b l e 3

The best fits and the corresponding spin and mass parameters of the neutron star located in the
4U 1636–53 atoll source, along with related errors in determining spin and mass of the neutron

star due to the fitting procedure

Combination of models χ2
min a ∆a M [M⊙] ∆M [M⊙]

RP1(3 : 2))− RP(5 : 4) 55 0.27 0.02 2.20 0.04
TP(3 : 2) − RP(5 : 4) 55 0.52 0.02 2.87 0.06
RP1(3 : 2))− TP1(5 : 4) 61 0.20 0.01 2.12 0.03
RP1(3 : 2) − TP(5 : 4) 62 0.45 0.03 2.46 0.06
TP(3 : 2) − TP1(5 : 4) 68 0.31 0.02 2.39 0.05
RP(3 : 2) − TP1(5 : 4) 72 0.46 0.03 2.81 0.09
WD(3 : 2) − TD(5 : 4) 113 0.34 0.08 2.84 0.21
TD(3 : 2) − TD(5 : 4) 122 0.33 0.08 2.82 0.22
TP1(3 : 2) − RPB(5 : 4) 275 0.59 0.02 3.71 0.09
TP1(3 : 2) − TPB(5 : 4) 296 0.33 0.02 2.62 0.03
RP(3 : 2) − TPB(5 : 4) 301 0.59 0.02 3.29 0.06

Shaded rows are the fits that are in agreement with the theoretical re-
strictions on the neutron star parameters.

(a) RP1(3:2) – RP(5:4) (b) RP1(3:2) – TP1(5:4)
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Fig. 5. The pairs of relevant frequency relations RP1–RP(a) and RP1–TP1(b) for the best fits related
to the observational data of the twin HF QPOs in the atoll source 4U 1636–53.

4. FFF -Test of the Resonant Switch Model

The significance statistics test of the RS model can be given by the F -test
which compares fits realized by nested models, where one of the models is a subset
of the other model (e.g., Bevington and Robinson 2003). We shall use theF -test
assuming that the RS model contains one free parameter in addition to the two free
parameters occurring in the standard RP model. The additional parameter is related
to the position of the switch in the oscillatory modes. TheF -test is applied to the
best version of the RS model in fitting the observational data(RP1–RP model), and
the related individual RP model.
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According to theF -test theory, we have to introduce quantityF -ratio that is
the ratio of the relative increase of the parameterχ2 reflecting the precision of the
fitting of the observational data and the relative increase of the degrees of freedom
in the models

F =

(
χ2

1−χ2
2

)
/χ2

2

(N1−N2)/N2
(10)

where χ2
2 corresponds to the model with smaller number of the degrees of free-

dom, whileχ2
1 corresponds to the model with larger number of degrees of freedom.

N1 (N2) denotes the number of degrees of freedom for the model with the higher
(lower) number of free parameters. Then theF -ratio implies theF -distribution
having two degrees of freedom defined by the relations

p1 = N1−N2, (11)

p2 = N2. (12)

The relevance of the model with higher number of the free parameters is given by
the so calledp-value that is determined by integration of the standard probability
density function of theF -distribution (e.g., Brandt 1999).

In the situation considered here, where the model with higher number of de-
grees of freedom is the RP model, and the model with lower number of degrees of
freedom is the RP1–RP model, we obtain

χ2
1 = χ2

RP= 347, (13)

χ2
2 = χ2

RP1−RP= 55. (14)

For the RP1–RP model, theχ2 has been determined in the previous section of the
present paper, for the RP model we use the result obtained in Török et al. (2012).
The numbers of the degrees of freedom are given by

N1 = NRP= 20, (15)

N2 = NRP1−RP= 19. (16)

The F -ratio then takes the value

F =
(347−55)/55
(20−19)/19

= 100.873, (17)

and the integration of the related probability distribution function implies the cor-
respondingp-value of theF -test to be

p−value≈ 5×10−9. (18)

The p-value gives the probability that additional parameter improves the fit by
chance. We can thus conclude that the RP1–RP variant of the RSmodel that is most
precise in fitting the observational data is really statistically significantly better in
the fitting in comparison with the RP model.
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5. Discussion

We have tested all the combinations of the frequency pairs ofthe RS model
predicting the range of the 4U 1636–53 neutron star mass and spin in (at least
partial) accord with neutron star structure theory by fitting the frequency relation
pairs to the observational data of the twin HF QPOs. We have considered only the
frequency relations containing geodetical orbital and epicyclic frequencies or some
combinations of these frequencies governed by the Kerr geometry. Nevertheless, it
should be noted that the cause of the switch of the pairs of theoscillatory modes is
not necessarily tied to the resonant phenomena related to the oscillations governed
by the frequencies of the geodetical motion. The switch can be related,e.g., to the
influence of the magnetic field of the neutron star on slightlymagnetized disk and
after the switch, the Alfvén wave model can be relevant (Zhang 2004, Zhanget al.
2006, 2007, Shi 2011). However, we would like to study the resonant phenomena
first, leaving other causes to future studies.

Generally, the TP–RP combination of the RS model, and its modifications,
enable acceptable explanation of the observational data for 4U 1636–53 source
(Stuchlíket al.2012). This expectation has been explicitly tested in the present pa-
per by fitting procedure realized for the observed twin HF QPOsequences related
to the resonant points. Of course, we plan to test the RS modelalso in the case of
some other atoll (4U 1608–52) or Z (Circinus X-1) sources containing a neutron
(quark) star with observational data indicating possible existence of two resonant
radii, and estimate allowed values of the spin and mass of theneutron (quark) stars.

In the case of the 4U 1636–53 source we have found very interesting results.
The fitting procedure turns to be by almost one order more precise in comparison
to those based on the individual frequency relations that were used in pairs in the
RS model. For example, the fitting by the RP model gives the maximal precision
along the mass–spin relationM(a) = M0[1+0.75(a+a2)] rather poor (Töröket
al. 2012),

χ2
RP≈ 347, χ2

RP/dof≈ 16, (19)

and the other frequency relations give comparable poor precision. Similar results
with rather poor precision were obtained also for models with frequency relations
of non-geodesic origin (Linet al. 2011). On the other hand, the best fit obtained
for the RS model with frequency relation pairs RP1–RP (and TP–RP excluded by
the theoretical models of neutron star structure) gives

χ2
RP1−RP≈ 55, χ2

RP1−RP/dof≈ 2.6, (20)

while the second best fit obtained for the frequency relationRP1–TP1 gives

χ2
RP1−TP1≈ 61, χ2

RP1−TP1/dof≈ 2.9. (21)

These fits are quite acceptable when related to the characterof the observational
data. The best fits of the acceptable frequency relations of the RS model predict also
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acceptable values of the neutron star mass and spin:M ≈ 2.20 M⊙ and a≈ 0.27
for the best fit, orM ≈ 2.12 M⊙ and a ≈ 0.20 for the second best fit. The best
fits of the other acceptable frequency relation pairs predict much higher mass and
spin that cannot be in accord with the detailed models of the neutron star structure
for the observational restrictions of the rotational frequency of the neutron star in
the 4U 1636–53 source. The mass predicted by the RS model is inaccord with
previous estimate given by Kluźniak (1998), but it is significantly higher than the
estimate giving the upper limit ofM ≈ 1.65 M⊙ , presented in Fujimoto and Taam
(1986).

Moreover, theF -test clearly demonstrates that the RP1–RP version of the RS
model improves significantly the quality of the data fits, giving the characteristic
p-value∼ 5×10−9 .

In the special situations related to accreting neutron stars with near-maximum
masses the Kerr metric can be well applied in calculating theorbital and epicyclic
geodetical frequencies, as has been done in the present paper, where the results of
the mass and spin interval findings are in agreement with the assumption of near-
maximum masses of the neutron stars. Therefore, we are approved to use in our
study the frequency formula related to the Kerr metric. In general situations, when
the neutron star mass is not close to its maximum value allowed by the equation
of state, the Hartle–Thorne geometry describing rotating neutron stars has to be
considered and the orbital and epicyclic frequencies reflecting influence of mass,
spin and quadrupole moment of the neutron star have to be used. The role of the
quadrupole moment is relevant only very close to the inner edge of the accretion
disk (Töröket al.2010).

6. Conclusions

The RS model has been tested for the atoll source 4U 1636–53 demonstrating
possible two resonant radii in the observed data. For relevant pairs of the oscilla-
tory frequency relations the range of allowed values of the mass and dimensionless
spin of the neutron star are determined giving in some cases acceptable pairs of fre-
quency relations, while some other pairs are excluded because of predicting unac-
ceptable values of the spin and/or mass of the neutron star at4U 1636–53 (Stuchlík
et al.2012).

We have shown that for some of the frequency-relation combinations of the
RS model of the twin HF QPOs observed in the neutron-star system 4U 1636–53,
the fits of the observational data are improved significantlyin comparison to those
obtained for the individual frequency relations used in thefitting procedure. In the
case of the best variant of the RS model, the ratio of theχ2 test takes the value

χ2
RP

χ2
RP1−RP

=
347
55

= 6.67 (22)
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indicating a substantial improvement of the data fitting by the RS model. The
restrictions on the mass and spin of the neutron star are significantly shrunk due
to the fitting procedure in comparison with the restrictionsgiven by the RS model
using only the frequency data restricted to the resonant radius and governed by the
energy switch effect only. Moreover, the best agreement of the mass and spin of the
neutron star predicted by the fitting procedures with the theoretical limits occurs for
the frequency-relation combinations giving the best fits tothe observational data.

We can conclude that the RS model can be considered as a plausible explanation
of the twin HF QPOs observed in the source 4U 1636–53. We can expect that it
could be successfully applied to some other LMXBs containing neutron stars and
indicating two resonant points in the observed data.

Nevertheless, the results of the RS model have to be related to the limits on
the 4U 1636–53 neutron star parameters indicated by other possible observational
phenomena. In fact, a preliminary result of simultaneous treatment of the twin-peak
HF QPOs and profiled (X-ray) spectral lines indicates the neutron star mass to be
M ≈ 2.4 M⊙ (Sannaet al. 2012) that gives an important restriction on the results
of the RS model and restricts substantially the variety of allowed combinations of
frequency relations used in the RS model. However, we clearly need more detailed
study of the profiled spectral lines.
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ABSTRACT

Context. High-frequency (millisecond) quasi-periodic oscillations (HF QPOs) are observed in the X-ray power-density spectra of
several microquasars and low-mass X-ray binaries. Two distinct QPO peaks, so-called twin peak QPOs, are often detected simultane-
ously exhibiting their frequency ratio close or equal to 3:2. A widely discussed class of proposed QPOs models is based on oscillations
of accretion toroidal structures orbiting in the close vicinity of black holes or neutron stars.
Aims. Following the analytic theory and previous studies of observable spectral signatures, we aim to model the twin peak QPOs
as a spectral imprint of specific dual oscillation regime defined by a combination of the lowest radial and vertical oscillation mode
of slender tori. We consider the model of an optically thick slender accretion torus with constant specific angular momentum. We
examined power spectra and fluorescent Kα iron line profiles for two different simulation setups with the mode frequency relations
corresponding to the epicyclic resonance HF QPOs model and modified relativistic precession QPOs model.
Methods. We used relativistic ray-tracing implemented in the parallel simulation code LSDplus. In the background of the Kerr space-
time geometry, we analyzed the influence of the distant observer inclination and the spin of the central compact object. Relativistic
optical projection of the oscillating slender torus is illustrated by images in false colours related to the frequency shift.
Results. We show that performed simulations yield power spectra with the pair of dominant peaks that correspond to the frequencies
of radial and vertical oscillation modes and with the peak frequency ratio equal to the proper value 3:2 on a wide range of inclinations
and spin values. We also discuss exceptional cases of a very low and very high inclination, as well as unstable high spin relativistic
precession-like configurations that predict a constant frequency ratio equal to 1:2. We demonstrate a significant dependency of broad-
ened Kα iron line profiles on the inclination of the distant observer.
Conclusions. This study presents a further step towards the proper model of oscillating accretion tori producing HF QPOs. More re-
alistic future simulations should be based on incorporating the resonant coupling of oscillation modes, the influence of torus opacity,
and the pressure effects on the mode frequencies and the torus shape.

Key words. accretion, accretion disks – black hole physics – relativistic processes

1. Introduction

High-frequency quasi-periodic oscillations (HF QPOs) have
been observed in several microquasars and low-mass X-ray bi-
naries (LMXBs). Their frequencies are roughly comparable to
frequencies of the orbital motion of test particles in the vicinity
of the central compact object. The black hole HF QPOs occur
at frequencies that are characteristic of a particular source and
that seem to be constant in time. Strictly speaking, the current
observational data only enables HF QPOs to be distinguished
for fairly specific spectral states (Belloni et al. 2012). However,
provided that HF QPOs with lower amplitudes and different fre-
quencies exist in the remaining time, their detection goes beyond
our present technological capabilities.

Two kinds of sharp HF QPO peaks can be distinguished,
so-called lower and upper HF QPOs (see van der Klis 2004;
Remillard & McClintock 2006, for a review). If both HF QPO

peaks are observed simultaneously (twin-peak HF QPOs), the
ratio of frequencies of upper and lower HF QPO peaks is often
close to 3:2, indicating the possible presence of unspecified res-
onant phenomena (Abramowicz & Kluźniak 2001; Török et al.
2005)1. At present, there is no consensus about the QPO na-
ture. However, the inverse mass scaling of the QPOs frequen-
cies (Abramowicz & Kluźniak 2001) provides a strong argument
for interpreting the observed QPO peaks by the frequencies of
perturbed orbital motion in the strong gravitational field or os-
cillation of some accretion structures. Such interpreting natu-
rally promises an attractive possibility of measuring the mass
and spin of the black hole (e.g. Abramowicz & Kluźniak 2001;
Abramowicz & Fragile 2013; Ingram & Motta 2014; Motta et al.
2014; Török 2005; Török et al. 2012). Many QPO models have

1 In the case of LMXBs, there are indications that the ratio of twin
peak HF QPOs frequencies is not only clustered around 3:2, but 4:3
and 5:4 ratios are also observed (see e.g. Török et al. 2007, 2008a,b,c).
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been proposed (Alpar & Shaham 1985; Lamb et al. 1985; Miller
et al. 1998; Psaltis et al. 1999; Stella & Vietri 1999; Abramowicz
& Kluźniak 2001, 2004; Kato 2001, 2007; Titarchuk & Wood
2002; Rezzolla et al. 2003; Schnittman & Bertschinger 2004;
Pétri 2005; Zhang 2005; Tagger & Varnière 2006; Stuchlík et al.
2008; Mukhopadhyay 2009; Čadež et al. 2008; Kostić et al.
2009; Germanà et al. 2009; Germanà 2013; Lai et al. 2013;
Pecháček et al. 2008, 2013); however, each model still faces sev-
eral difficulties. Moreover, the capabilities of the present X-ray
observatories (e.g. Rossi X-ray Timing Explorer – RTXE) are
insufficient for adequately analysing the harmonic content of
the power spectra of observed lightcurves, which can be crucial
for distinguishing between particular QPO models (Bakala et al.
2014; Karas et al. 2014). Hopefully, the proposed future instru-
ments represented by the Large Observatory for X-ray Timing
(LOFT) project (Feroci et al. 2014), for instance, which is tar-
geted to explore strong gravity environment, will advance QPOs
observational possibilities.

A specific class of QPO models assumes oscillations excited
in accretion tori. The first QPO model involving numerically
modelled thick accretion tori was developed by Rezzolla et al.
(2003), and related lightcurves and power spectra were analysed
by Schnittman & Rezzolla (2006). Lightcurves and power spec-
tra of radially and vertically oscillating slender torus with a cir-
cular cross-section were investigated in the background of the
Schwarzschild geometry by Bursa et al. (2004). Numerical sim-
ulations of epicyclic modes of tori oscillations were compared
to the analytical results by Šrámková (2005). Later on, several
studies devoted to more realistic analytic treatment of oscillating
slender tori appeared (e.g. Abramowicz et al. 2006; Blaes et al.
2006). These studies were extended to the case of non-slender
tori by Šrámková et al. (2007) and Straub & Šrámková (2009).

In this paper, we examine the timing properties of the numer-
ically simulated flux emitted from a slender, polytropic, perfect
fluid, non-self-gravitating accretion torus with constant specific
angular momentum, which oscillates simultaneously in radial
and vertical directions2. The article is a follow-up of the studies
of Mazur et al. (2013) and Vincent et al. (2014), who investigated
the observable signatures of simple time-periodic slender torus
deformations, as well as the slender torus motion described by
the set of oscillation modes derived by Blaes et al. (2006). Using
their results, we took the next step towards a fully realistic model
of HF QPO based on oscillations of accretion tori. To model de-
tected twin-peak HF QPOs pairs, we defined a new dual oscil-
lation mode as a linear combination of the two lowest slender
torus oscillation modes: radial and vertical ones. We assumed
that the observed twin peaks HF QPOs can be identified with
the pairs of the most prominent peaks in the modelled power
spectra. We examined two different setups of the dual oscillation
regime corresponding to the twin peaks HF QPOs frequency re-
lation of epicyclic resonance HF QPOs model (Abramowicz &
Kluźniak 2001) and slightly modified analogous relations of rel-
ativistic precession QPOs model (Stella & Vietri 1999; Török
et al. 2012). Those two competing QPOs models are probably
the most discussed ones at present (Feroci et al. 2014).

Our simulations were performed in the background of the
Kerr geometry that corresponds to the case of microquasars
with the black hole binary component. It was shown that the
spacetime around slowly rotating high-mass neutron stars can be

2 The slender torus geometry considered here accords well with the
truncated disk model (see e.g. Done et al. 2007). Also, the power spec-
tral fits of Ingram & Done (2012a) predict that the hot inner flow
(corona) has a small scale height in the relevant spectral state.

approximated fairly well by the Kerr metric (Török et al. 2010,
2012; Urbanec et al. 2013). Therefore, such a finding sets con-
ditions and constraints for the applicability of our results for the
case of LMXBs with neutron star.

The commonly accepted model of X-ray energy spectrum
of microquasars and LMXBs assumes that the illumination of
the cold accretion disk or torus by the primary component of
X-ray spectrum, interpreted as the inverse Compton scattering
of thermal photons in a hot corona, produces spectral lines by
fluorescence. The strongest observed line is the Kα iron line lo-
cated at 6.4 keV in the rest frame. Observed broad profiles of the
spectral lines are substantially influenced by the spacetime met-
ric, the geometry of the emitting region and the distant observer
inclination (Fabian et al. 1989; Čadež & Calvani 2005; Bambi
2013). To develop an additional tool for distinguishing various
configurations of radiating slender torus, we computed related
Kα iron line profiles.

The article consits of the following parts. Section 2 is de-
voted to the theory that describes the slender torus model and
its dual oscillation regime. Section 3 provides more details of
the investigated particular setup of the model of slender torus.
Section 4 describes our numerical implementation of relativistic
ray-tracing and the following construction of lightcurves, power
spectra, and iron Kα line profiles. Section 5 is devoted to the
methodology of simulations performance and results analysis.
Section 6 shows the obtained results, and Sect. 7 gives conclu-
sions and future research perspectives.

2. Slender torus

2.1. Equilibrium torus configuration

We consider an axisymmetric, non self-gravitating, perfect fluid,
constant specific angular momentum, circularly orbiting accre-
tion torus in the background of the Kerr geometry. Using the
(− + ++) signature and geometrical units (c = G = M = 1),
the line element of the Kerr spacetime in Boyer-Lindquist co-
ordinates parameterized by specific angular momentum (spin) a
reads

ds2 = −
(
1 − 2r
Σ

)
dt2 − 4ra

Σ
sin2 θ dt dϕ +

Σ

Δ
dr2

+Σ dθ2 +

(
r2 + a2 +

2ra2 sin2 θ

Σ

)
sin2 θ dϕ2, (1)

where Σ ≡ r2 + a2 cos2 θ and Δ ≡ r2 − 2r + a2. Moreover, we
assume that the radial extent of the torus cross-section is smaller
than its central radius. The perfect fluid that forms the torus is
described by the polytropic equation of state (with a polytropic
constant K and polytropic index n). In this case, the energy den-
sity e is a function of pressure p and mass density ρ. The pressure
is a function of mass density alone. The torus surface is given by
the zero pressure, while the pressure gradient is equal to zero
in the torus centre. Using the conservation law, one can get (see
Abramowicz et al. 2006; Blaes et al. 2006)

p
ρ
=

p0

ρ0
f (r, θ), (2)

where the surface function f is constant at isobaric and isoden-
sity surfaces. Naturally, the surface function vanishes at the torus
surface. Here and below, values of the quantities denoted with a
subscript 0 are taken in the centre of the torus in the equilibrium
state.
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Following Abramowicz et al. (2006), we use the new radial
and vertical coordinates

x̄ =
(√
grr

)
0

(
r − r0

βr0

)
, ȳ =

(√
gθθ

)
0

(
π/2 − θ
βr0

)
(3)

with zero in the torus centre. Parameter β determines the torus
thickness and is given by formula

β2 =
2nc2

s0

r2
0(ut

0)2Ω2
0

, (4)

where ut
0 denotes the four-velocity of the fluid and square of the

sound speed c2
s0 � 1 can be expressed in the form

c2
s0 =

(
∂p
∂ρ

)

0

=
n + 1

n
p0

ρ0
· (5)

Keplerian angular velocity ΩK0 in the Kerr spacetime reads as

ΩK0 = 1/(r3/2
0 + a). (6)

In the case of slender torus, the parameter β must fulfil the
condition

β� 1. (7)

In such a coordinate frame, the surface function f (r, θ) can be
rewritten as

f (x̄, ȳ) = 1 − ω̄2
r x̄2 − ω̄2

θ ȳ
2, (8)

where

ω̄r =

√
1 − 6

r0
+

8a

r3/2
0

− 3a2

r2
0

, (9)

ω̄θ =

√
1 − 4a

r3/2
0

+
3a2

r2
0

, (10)

are radial and vertical epicyclic frequencies of free test particles
in the centre of the torus scaled to ΩK0 (see e.g. Aliev & Galtsov
1981; Abramowicz & Kluźniak 2005; Aliev 2008). We can eas-
ily see that the slender torus cross-section (given by f (x̄, ȳ) = 0)
has elliptical shape in the x̄-ȳ plane.

2.2. Oscillating slender torus

We assume small pressure perturbation in the form

δp ∝ ei(mϕ−Ωt), (11)

where m is azimuthal wave number (m ∈ N), and Ω is oscilla-
tion angular frequency. It is useful to introduce a new variable –
eigenfunction Wi, which is the function of perturbation in pres-
sure in the form

Wi = − δput
0ρσi
, (12)

where related eigenfrequencyσi reads

σi = Ωi − miΩK0. (13)

The perturbative surface equation f̃ (r, θ) and torus four-velocity
can be expressed in the form (Vincent et al. 2014)

f̃ (r, θ) = f (r, θ) − 1
n + 1

ρ0

p0
ut

0Re {Wi}σi, (14)

uμ = uμ0 + Re

{
iρ0

p0 + e0

(
∂Wi

∂xμ

)}
· (15)

A discrete set of eigefunctions Wi and related eigenfrequen-
cies σi describing different oscillation modes was found by
Blaes et al. (2006) solving Papaloizou-Pringle equation for
slender torus case corresponding to the condition β → 0
(Abramowicz et al. 2006; Papaloizou & Pringle 1984). Here we
use only the two simplest solutions: radial oscillation mode and
vertical oscillation mode. In the case of radial oscillation mode,
the eigenfunction and related eigenfrequency are given as

Wr = ar x̄ei(mrϕ−Ωr t), σr = ω̄rΩK0, (16)

where ar is a free parameter related to the amplitude of oscilla-
tions. Then the surface Eq. (14) takes the form

1 − ω̄2
r x̄2 − ω̄2

θ ȳ
2 − Ar x̄ cos(mrϕ −Ωrt) = 0, (17)

where amplitude Ar is given by the formula

Ar =
1

n + 1
ρ0

p0
ut

0σrar, (18)

and the mode oscillation angular frequency reads as

Ωr = σr + ΩK0mr. (19)

To rewrite the surface Eq. (17) to the form

1 − ω̄2
r (x̄ + δx̄)2 − ω̄2

θ ȳ
2 = 0, (20)

the term
(

Ar

2ω̄r
cos(mrϕ − Ωrt)

)2

(21)

must be added. Then the displacement δx̄ can be expressed by
the formula

δx̄ =
Ar

2ω̄2
r

cos (mrϕ − Ωrt) . (22)

In this approximation, the added term should be small enough,
which corresponds to the condition for radial amplitudes

A2
r

4ω̄2
r
� 1. (23)

The radial component of the surface four-velocity is simply
given by a derivative of the displacement δx̄ with respect to
proper time τ as

ur
sur =

dr
dτ
=

dx̄
dτ
βr0(√
grr

)
0

=
d(−δx̄)

dτ
βr0(√
grr

)
0

, (24)

and it takes the covariant form

usur
r = −βr0

(√
grr

)
0

Ar

2ω̄r
ΩK0ut

0 sin(mrϕ −Ωrt). (25)

Analogously, in the case of the vertical oscillation mode, the
eigenfunction and related eigenfrequency are given as

Wθ = aθȳei(mθϕ−Ωθ t), σθ = ω̄θΩK0. (26)
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Using the condition for vertical amplitudes
A2
θ

4ω̄2
θ

� 1, the sur-

face equation, displacement δȳ and surface four-velocity com-
ponent usur

θ for the vertical mode can be expressed as

1 − ω̄2
r x̄2 − ω̄2

θ (ȳ + δȳ)2 = 0, (27)

δȳ =
Aθ

2ω̄2
θ

cos (mθϕ −Ωθt) , (28)

usur
θ = βr0

(√
gθθ

)
0

Aθ
2ω̄θ
ΩK0ut

0 sin(mθϕ − Ωθt), (29)

where amplitude Aθ given by formula

Aθ =
1

n + 1
ρ0

p0
ut

0σθaθ, (30)

and mode oscillation angular frequency reads

Ωθ = σθ + ΩK0mθ. (31)

2.3. Dual oscillation mode

In such an approximation, radial and vertical oscillations are in-
dependent, and we can easily combine them into a new surface
equation

1 − ω̄2
r (x̄ + δx̄)2 − ω̄2

θ (ȳ + δȳ)2 = 0. (32)

The equation above defines the dual oscillation mode with
four parameters: amplitudes Ar, Aθ and azimuthal wave num-
bers mr, mθ.

3. Investigated model of oscillating slender torus

3.1. Location, thickness, and frequencies identification

Radial and vertical angular frequencies Ωr,Ωθ of the dual oscil-
lation mode are given as a linear combination of eigenfrequen-
cies σr, σθ, and Keplerian angular velocity ΩK0. Therefore the
location of the torus centre in equilibrium r0, value of the spin of
the central Kerr black hole and wave number pair mr, mθ fully
determine the ratio of oscillation angular frequencies Ωθ/Ωr.
Considering the properties of epicyclic and orbital frequencies in
the Kerr spacetime (Török & Stuchlík 2005), our model identi-
fies the lower and upper kHz QPOs frequencies with νl = |Ωr/2π|
and νu = |Ωθ/2π|, respectively. As the aim of the article is to
model twin peak HF QPOs with peaks frequency ratio close to
3:2, we choose r0 in such a way that the ratioΩθ/Ωr is just equal
to 3:2 for a given wave number pair3. In each of these positions
of the torus centre, we set the radial extent of the torus cross-
section to r0/10. Corresponding values of the parameter β are in
accordance with a slender torus condition (7). Arbitrary ampli-
tudes of oscillations are fixed by setting Ar,θ = ω̄r,θ.

3.2. Optical properties of the torus

The torus described above is assumed to be optically thick.
Moreover, we use two other very simple assumptions. The torus
surface emits radiation isotropically in its comoving local frame

3 Investigated torus model does not consider the presence of the reso-
nant coupling of oscillation modes, which can cause amplification or ex-
citation of QPOs for the preferred values of the radial coordinate (Horák
2008).

and the local flux integrated over the surface area of a thin verti-
cal slice of the torus is conserved. Such a surface area is propor-
tional to rc(tem, φ)×C(tem, φ), where C(tem, φ) is the torus cross-
section circumference, tem the time of emission, and rc(tem, φ)
the radial coordinate of the centre of the torus cross-section. In
the case of the approximation we used, the investigated dual
oscillation mode describes pure radial and vertical displace-
ments, and the torus cross-section circumference remains con-
stant. Therefore, using normalization to 1 for the equilibrium
state, the local emitted intensity simply reads as

Iem(tem, φ) = r0/rc(tem, φ). (33)

3.3. Epicyclic resonance axisymmetric setup

The first investigated torus setup combines pure epicyclic ax-
isymmetric vertical and radial oscillation, where radial and
vertical oscillation frequencies are identical with radial νr =
ω̄rΩK0/2π and vertical νθ = ω̄θΩK0/2π epicyclic frequen-
cies, respectively. This setup corresponds to the often quoted
epicyclic resonance (ER) HF QPOs model (Abramowicz &
Kluźniak 2001) based on the presence of non-linear resonant
phenomena between epicyclic disc oscillation modes (Kluźniak
& Abramowicz 2001; Abramowicz et al. 2003a,b; Horák 2008).
The dual oscillation mode with such behaviour is related to wave
number pair mr = 0, mθ = 0. Therefore the frequency relation
determining the radial coordinate of the torus centre r0 reads as

νu
νl

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

mθ = 0

mr = 0

=
νθ
νr
=

3
2
· (34)

3.4. Relativistic precession-like non-axisymmetric setup

The dual oscillation mode related to wave number pair mr = −1,
mθ = −2 yields the frequency relation in the form

νu

νl

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

mθ =−2

mr =−1

=
2νK − νθ
νK − νr =

3
2
, (35)

where νK = ΩK0/2π is the Keplerian orbital frequency at r0. As
the denominator matches the periastron precession frequency, in
the Schwarzschild case the relation corresponds exactly to the
relation of the relativistic precession (RP) QPOs model

νu
νl

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐
RP

=
νK
νK − νr · (36)

The RP model was proposed in a series of papers by Stella &
Vietri (1998, 1999, 2002), Morsink & Stella (1999) and explains
the QPOs as a direct manifestation of relativistic epicyclic mo-
tion of radiating blobs (Stella & Vietri 1999). In the case of
slow rotation, the frequency relation (35) still almost coincides
with the ratio of twin peaks HP QPOs frequencies predicted by
the relation (36) (Török et al. 2012). Such an approach can be
understood as a redefinition of the modulation mechanism of
RP model, but it preserves the predictive power of the model.

4. Numerical modelling of radiation emission,
propagation, and detection

4.1. Ray-tracing in the Kerr spacetime

Relativistic ray-tracing is a key ingredient of proper models
of relativistic imaging, lightcurves of accretion structures, re-
lated power spectra, as well as relativistic spectral line profiles.
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Fig. 1. Schematic ray-tracing geometry for the cases of a general observer and distant observer (robs → ∞).

Different ray-tracing techniques were developed using direct nu-
merical integration, transfer functions, and elliptic integrals (see
e.g. Cunningham & Bardeen 1972; Karas et al. 1992; Viergutz
1993; Schnittman 2006; Rauch & Blandford 1994; Beckwith &
Done 2005; Broderick & Loeb 2005; Bakala et al. 2007; Dexter
& Agol 2009; Vincent et al. 2011; Schee & Stuchlík 2013; Chan
et al. 2013; Yang & Wang 2014). Our parallel code LSDplus
uses reverse ray-tracing implemented by a direct numerical inte-
gration of the null geodesics.

Components of the four-momentum of a photon in the Kerr
spacetime are given by

pr = ṙ = srΣ
−2

√
Rλ,q(r),

pθ = θ̇ = sθΣ
−2

√
Θλ,q(θ), (37)

pφ = φ̇ = Σ−2Δ−1
[
2ar + λ

(
Σ2 − 2r

)
cosec2θ

]
,

pt = ṫ = Σ−2Δ−1
(
Σ2 − 2arλ

)
,

where the dotted quantities denote differentiation with respect
to some affine parameter, and the sign pair sr,sθ describes ori-
entation of radial and latitudinal evolution, respectively (see e.g.
Carter 1968; Misner et al. 1973; Chandrasekhar 1983). Radial
and latitudial effective potentials read as

Rλ,q (r) =
[(

r2 + a2
)
− aλ

]2 − Δ
[
q − (λ − a)2

]
,

Θλ,q (θ) = q + a2 cos2 θ − λ2cot2θ. (38)

Here, λ and q are constants of motion related to the photons
covariant angular and linear momenta. The LSDplus code per-
forms a time-reverse integration of the package of null geodesics
falling on a virtual detector of a distant observer with the screen
resolution 1000 × 1000 pixels located at (θobs, r = 1000 M,
ϕ = 0) and traces the intersection of the geodesics with the disk
surface corresponding to the emission events.

The code LSDplus enables modelling relativistic optical ef-
fects in the sky of the observer located anywhere above the event
horizon of a Kerr black hole. In the local reference frame related
to such an observer, the components of the four-momentum of
photons with energy normalized to one, falling on the pixel with
coordinates x, y, can be written as follows (see the right side of
Fig. 1):

kt = −1, kr =

√
1 − x2 − y2, kθ = −y, kϕ = −x. (39)

Then one can obtain the coordinate covariant components of the
four-momentum by transforming the local components (39), us-
ing appropriate frame tetrads of one-form by relation

pμ = e〈α〉μ k〈α〉. (40)

The frame tetrad of one-form related to static observer in the
Kerr spacetime is given as

e(t) =

⎧⎪⎪⎨⎪⎪⎩

√
1 − 2r
Σ
, 0, 0,

2ar sin2 θ√
Σ2 − 2rΣ)

⎫⎪⎪⎬⎪⎪⎭ , (41)

e(r) =
{
0,

√
Σ/Δ, 0, 0

}
,

e(θ) =
{
0, 0,
√
Σ, 0

}
.

e(ϕ) =

⎧⎪⎪⎨⎪⎪⎩0, 0, 0,

√
ΔΣ

Σ − 2r
sin θ

⎫⎪⎪⎬⎪⎪⎭ .

The constants of motion λ(x, y) and q(x, y) can be easily obtained
by straightforward calculation from the components of the four-
momentum (40), using the relations (see e.g. Chandrasekhar
1983)

λ = − pφ
pt
, (42)

q2 =

(
pθ
pt

)2

+

(
λ tan

(
π

2
− θ

))2
− a2 cos2 θ.

However, in the investigated case of a distant static observer
(robs → ∞), when the rays reaching the observer position are
almost parallel (see Fig. 1), the relations between coordinates on
the detector screen and constants of motion can be simply writ-
ten as (e.g. Cunningham & Bardeen 1973)

x = − λ

sin θobs
, y = Θλ,q (θobs) . (43)

In the event of detection, the constants λ(x, y) and q(x, y), to-
gether with the initial conditions (coordinates of observer and
sign pair sr , sθ), fully determine the reverse temporal evolution
of the zero geodesics of photons falling on a pixel of the detec-
tor screen with the coordinates x, y. The Runge Kutta method
of the eighth order (Dorman-Prince method) (Press et al. 2002)
used here, integrates the null geodesics and reaches the relative
accuracy of 10−15, which, in the case of a central black hole
with stellar mass M = 5 M�, corresponds to an order of accu-
racy of 10−11 m on a radial coordinate. To determine the proper
orientation of the radial and latitudinal component of the four-
momentum (37), the code also analyses the positions of the ra-
dial and vertical turning point and sets the corresponding signs sr
and sθ. The integration of Eq. (37) by the Runge Kutta method
of the eighth order proceeds naturally with an adaptive step.
However, the resulting null geodesic is then finally interpolated
by the polynomials of the third order for the chosen equidistant
time step ΔT , in the case of central black hole mass M = 5 M�,
corresponding to 10−5 s.
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4.2. Radiating surfaces and lightcurves

The surfaces of the tori are modelled by the grid with a resolu-
tion of 15 nodes in the radial direction and 75 nodes in the az-
imuthal one. The grid contains the time-dependent information
about coordinates, local intensity, and the four-velocity in the
nodes. The time resolution of the surface of the tori necessarily
corresponds to the time resolution of the interpolation steps of
the geodesics package ΔT . The code LSDplus traces the inter-
sections of the geodesics and linearly interpolated surface of a
torus between triads of the nodes of the grid. Assuming the nor-
malized energy in the local observer’s frame, the frequency ratio
of the emitted and observed radiation from the torus can be ex-
pressed using projection of the four-momentum of a photon pμ

to the four-velocity of the surface of the torus usur
μ in the event of

the emission as follows:

g =
1

pμusur
μ

· (44)

Radial and vertical components of the surface four-velocity
are given by equations (25) and (29). The remaining compo-
nents usur

ϕ , usur
t can easily be obtained using the normalisation

condition uμuμ = −1, together with the assumption of constant
specific angular momentum (Vincent et al. 2014). Then the in-
stantaneous bolometric intensity detected by each pixel of the
screen of a small virtual detector is calculated as

Iobs(tobs) = Iem(tobs − tdelay)g4, (45)

where tdelay corresponds to the time delay (the change of a time
coordinate) along the appropriate photon trajectory connecting
the event of detection of a photon on a pixel with the event of
emission on the surface of the torus. Here, Iem is local intensity
on the surface in the comoving frame given by the Eq. (33). The
total instantaneous detected bolometric flux F(tobs) is a sum of
intensities (45) detected by individual pixels multiplied by the
solid angle ΔΠ subtended by the pixel in the observer sky

F(tobs) =
1000∑

i= 1

1000∑

j= 1

Ii j(tobs)ΔΠ, (46)

where i is the index of a pixel column and where j is the index of
a pixel row4. Since we are using relative units, we can simply set
ΔΠ = 1. The resulting lightcurves are generated in the time reso-
lution ΔT that corresponds to 20 time samples per characteristic
vertical oscillation period of the analysed dual oscillation mode.

4.3. Power spectra

To calculate power spectral densities (PSD), the resulting
lightcurves are processed by fast Fourier transform (FFT). The
PSD at frequency fk = k/(NΔt) is given as the square of the
modulus of the FFT of the signal as

PSD( fk) =

∣∣∣∣∣∣∣∣
1
N

N−1∑

j= 0

F(t j)exp(2πi jk/N)

∣∣∣∣∣∣∣∣

2

, (47)

where F(t j) is the observed flux (46) at observation time t j =
jΔt, and N is the total number of time samples in the lightcurve.

4 We assume tiny angular size of the torus image in the observer sky
and therefore constant ΔΠ.

Table 1. Most prominent peaks observed in power density spectra of
simulated lightcurves.

Frequency scaled in νl Peak origin
1/2 νu − νl
1 νl = |Ωr/2π|
3/2 νu = |Ωθ/2π|
2 2νl
5/2 νu + νl
3 3νl , 2νu

4.4. Iron Kα line profiles

The fluorescent iron Kα line consists of two components with
FWHM ≈ 3.5 eV and separation ≈13 eV (see Basko 1978, for
details). Considering the energy resolution ΔE = 10 eV of the
simulation code, we approximated the rest iron Kα line profile
by Lorentzian peak with the scale factor γ = 20 eV located at
E0 = 6.4 keV. The instantaneous observed flux per pixel in the
energy bin with the central energy Ec is given as

Φ(tobs, Ec) = Iem(tobs − tdelay)g3 f (Ec/g, γ, E0)ΔΠ, (48)

where Lorentzian function f reads as

f (x, γ, x0) =
1

πγ
[
1 +

(
x−x0
γ

)2
] · (49)

Then the observed instantaneous iron Kα line profile is con-
structed by summing energy bin fluxes per pixels (48) over all
pixels of the virtual detector in the given time sample. The final
integrated line profile is obtained by summing instantaneous line
profiles over all time samples.

5. Methods

Applying ray-tracing methods described in the previous section,
we performed simulations of lightcurves of the model discussed
above of a slender accretion torus oscillating in the dual-mode
regime. To obtain closed trajectories of the torus surface and
corresponding closed lightcurves, we simulated the behaviour
of emitted radiation during three periods of vertical oscillation
considering the fixed ratio of oscillation frequencies νu/νl = 3:2.
Then we calculated power spectra of obtained lightcurves by re-
lation (47). We studied the impact of the central black hole spin
using its three representative values a ∈ (0, 0.5, 0.96). The upper
limit of the investigated spin value is almost the highest one, for
which the location of equilibrium torus centre r0 can be found by
the RP-like frequency relation (35). The impact of the observer
inclination (polar angle) i is analysed using the following set of
inclination values:

i ∈
(
0.01,

π

12
,
π

6
,
π

4
,
π

3
,

5
12
π,

5.5
12
π,

5.75
12
π,
π

2

)
·

We analyse the magnitude relations of five prominent PSD peaks
corresponding to two main dual-mode oscillation frequencies,
their higher harmonics, and their sum or difference, particularly
summarised in the Table 1. Power spectra are calculated for all
combinations of investigated values for the spin and the inclina-
tion. We plot the magnitudes of these peaks as linearly interpo-
lated functions of the inclination for all the investigated values
of the spin and for both investigated torus setups separately (see
left panels of Figs. 3 and 4).
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Table 2. Values of parameters describing the investigated slender torus
model for ER axisymmetric setup.

Spin 0.0 0.5 0.96
β 0.04 0.04 0.04
Central radial coordinate r0 10.80 7.92 4.35
Torus radial extent 1.08 0.79 0.44
Torus vertical extent 0.80 0.61 0.38
Max. radial displacement 0.27 0.20 0.11
Max. vertical displacement 0.20 0.15 0.09

Moreover, the integrated iron Kα line profiles emitted from
the torus surface are modelled for inclination values i ∈(
π
12 ,

π
6 ,
π
4 ,
π
3 ,
π
2

)
. The geometry of the torus’s optical projection

is illustrated in Fig. 2 by the frequency shift maps on the vir-
tual detector screen drawn in false colours related to the fre-
quency shift values5. The maps clearly show that the simulation
parameters are sufficient for distinguishing the first three rela-
tivistic images. The iron Kα line profiles that were also com-
puted display significant secondary blueshifted horns related to
secondary (first indirect) relativistic images (see right panels of
Figs. 3 and 4).

6. Results

6.1. Results for the ER axisymmetric setup

Table 2 summarises the parameters of the slender torus that os-
cillates in the pure epicyclic axisymmetric dual mode (mr = 0,
mθ = 0) for three investigated values of the spin. The radial co-
ordinate of equilibrium torus centre r0 given by relation (34)
remains above both the black hole photosphere6 and the ergo-
sphere for all such configurations.

The lightcurve waveforms are influenced by a complex inter-
play of the general relativistic frequency shift, the time variation
of the emitting torus surface area, and the time variation of the
apparent torus area on the virtual detector screen (Bakala et al.
2015). All these effects strongly depend on the radial coordinate
of the emission event, the inclination of the distant observer i,
and the central black hole spin a. Nevertheless, the magnitude
relations depicted in the left-hand panels of Fig. 3 exhibit cer-
tain identical qualitative features for all investigated spin values.
The pair of peaks corresponding to radial νl and vertical νu torus
oscillation frequency is dominant on a wide range of i. For this
inclination range, the examined ER axisymmetric setup predicts
twin peaks HF QPOs frequency ratio equal to 3:2 in accordance
with expectations. The νl peak remains most prominent for low
and medium values of distant observer inclination i. The mag-
nitude of the νu peak grows with i becoming the most promi-
nent for relatively high inclinations, but it rapidly falls for ex-
act or almost exact equatorial observers. At the same time, the
magnitude of the peak corresponding to 3νl, 2νu rapidly grows.
Therefore, in the case of such observers, the examined torus con-
figuration predicts a frequency ratio equal to 1/3 for the pair of
the most distinguishable HF QPO peaks. In the case of zero or
moderate spins (a = 0, a = 0.5) and small inclinations (i ≤ π

12 ),

5 The frequency shift maps displayed in Fig. 2 are not zoomed and
not positioned identically with respect to the projection of the whole
observer sky.
6 Kerr black hole photosphere – a region of spherical unstable photon
orbits reaches maximum extent in the equatorial plane between coro-
tating and counter-rotating circular photon orbits, while it becomes in-
finitesimally thin on the polar axis (see e.g. Teo 2003, for details)

Table 3. Values of parameters describing the investigated slender torus
model for RP-like non-axisymmetric setup.

Spin 0.0 0.5 0.96
β 0.02 0.02 0.002
Central radial coordinate r0 6.75 4.66 1.85
Torus radial extent 0.68 0.47 0.18
Torus vertical extent 0.27 0.18 0.02
Max. radial displacement 0.17 0.12 0.05
Max. vertical displacement 0.07 0.05 0.004

the magnitude of the 2νl peak slightly exceeds the νl peak mag-
nitude, and the predicted twin peaks HF QPOs frequency ratio
value is equal to 1:2. As illustrated in the plots of magnitude
relations (see left panels of Fig. 3), the spectral content of less
distinct PSD peaks varies depending on values of i and a.

Like the power spectra behaviour, the iron Kα line profiles
keep some identical qualitative features for all investigated spin
values. Naturally, the energy span of line profiles is expanded
and shifted down with decreasing r0. The dependence of the
height of the primary blueshifted horns on i is the only quali-
tative difference observable for different spin values (see right
panels of Fig. 3).

6.2. Results for the RP-like non-axisymmetric setup

Table 3 summarizes parameters of the slender torus oscillating
in the RP-like non-axisymmetric dual mode (mr = −1, mθ = −2)
for three investigated values of the spin. In the case of zero or
moderate spin (a = 0, a = 0.5), the radial coordinate of equilib-
rium torus centre r0 given by relation (35) remains located above
the black hole photosphere, as well as the ergosphere, while in
the case of high spin (a = 0.96), the torus is located inside
the ergopshere and therefore also deeply inside the photosphere.
Moreover, in the case of high spin, the radial extent of the torus
obtained as r0/10 exceeds the location of the cusp of equipoten-
tial surfaces (Blaes et al. 2006; Straub & Šrámková 2009). Such
a torus configuration becomes unstable. Unfortunately, a surface
area of the high spin stable configuration with maximum pos-
sible β = 7.0 × 10−5 is almost negligible, and emitted flux is
comparable to the numerical error of the simulation. Therefore,
we keep the torus radial extent equal to r0/10 and choose the
unstable high spin configuration with β = 0.002.

In the case of zero or moderate spin (a = 0, a = 0.5), the
qualitative picture of power spectra and iron Kα line profiles
behaviour is very similar to the case of the ER axisymmetric
setup discussed in the previous section (see Fig. 4). The predic-
tion for low inclination represents the main difference. In the
Schwarzschild case, the pair of peaks corresponding to radial νl
and vertical νu oscillation frequency also remains dominant for
i ≤ π

12 , predicting the twin peaks HF QPOs frequency ratio equal
to 3:2, as depicted in the top left panel of Fig. 4. In the case of
a = 0.5 and a very small inclination, the magnitude of the νu − νl
peak (instead of the 2νl peak acting the same way in the case of
the ER axisymmetric setup) slightly exceeds the νl peak magni-
tude, and the predicted twin peaks HF QPOs frequency ratio is
equal to 1:2 (see the middle left panel of Fig. 4).

The unstable high-spin configuration exhibits an entirely dif-
ferent picture, as shown in the bottom panels of Fig. 4. In the
whole range of inclination, the pair of dominant PSD peaks cor-
responds to the radial νl frequency and its second harmonic 2νl.
Therefore, in the unstable high spin case, the examined RP-like
non-axisymmetric setup surprisingly predicts the twin peaks HF
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Fig. 2. Examples of the frequency shift maps for different distant views of the oscillating slender torus. The colour boxes on the right display
the false colours scale of frequency shift values. The left column corresponds to the case of the ER axisymmetric dual mode. The right column
corresponds to the case of the RP-like non-axisymmetric dual mode. The rows of the figure correspond to spin values a = 0, a = 0.5 and a = 0.96,
respectively.
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Fig. 3. Simulations outputs in the case of the ER axisymmetric dual mode. Left panels: the amplitudes of prominent PSD peaks (see Table 1)
as a function of distant observer inclination i. Right panels: iron Kα line profiles constructed for i ∈

(
π
12 ,

π
6 ,
π
4 ,
π
3 ,
π
2

)
. The rows of the picture

correspond to the cases of spin values a = 0, a = 0.5, and a = 0.96, respectively (see Table 2).

QPOs frequency ratio value that is only equal to 1:2. The dra-
matic change of the optical projection properties is documented
by iron Kα line profiles in the bottom right-hand panel of Fig. 4.
The energy span is significantly shifted down, and both primary
and secondary blueshifted horns have comparable heights. The
computed profiles also display numerical instabilities caused by
a small emitting surface area of the unstable high spin torus
configuration. The line profile related to i = π

2 exhibits excep-
tional behaviour, because its extremely wide energy span reaches
11 keV and its primary blueshifted horn is absolutely dominant.

The corresponding frequency shift map in the bottom right-hand
panel of Fig. 2 also illustrates the equatorial optical projection of
the torus located in the close vicinity of the Kerr black hole event
horizon. It is clearly visible that the angular size of both sec-
ondary and tertiary relativistic images exceeds the angular size
of the primary image. Moreover, despite the significant gravita-
tional redshift, the high Keplerian orbital velocity causes a high
Doppler blueshift for the left side of the torus projection corre-
sponding to the extreme height of the primary blueshifted horn
in the iron Kα line profile.
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Fig. 4. Simulations outputs in the case of the RP-like non-axisymmetric dual mode. Left panels: the amplitudes of prominent PSD peaks (see
Table 1) as a function of distant observer inclination i. Right panels: iron Kα line profiles constructed for i ∈
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π
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π
3 ,
π
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)
. The rows of the

picture correspond to the cases of spin values a = 0, a = 0.5, and a = 0.96, respectively (see Table 3).

7. Conclusions and perspectives

The aim of this article has been to model twin peaks HF QPOs
as a spectral impact of isotropically radiating slender tori os-
cillating in a dual mode regime in the close vicinity of Kerr
black holes. Vincent et al. (2014) show that a significant frac-
tion of the observed flux is regulated by the torus motion de-
scribed by the lowest oscillation modes. We therefore exam-
ined two configurations of the dual oscillation regime based on
the lowest radial and vertical oscillation modes with different

azimuthal wave numbers. Appropriate frequency relations cor-
respond to the two competing QPOs models, the epicyclic res-
onance (ER) HF QPOs model (Abramowicz & Kluźniak 2001)
and a slightly modified relativistic precession (RP) QPOs model
(Stella & Vietri 1999). We model twin peaks HF QPOs by the
pair of the most prominent peaks in the obtained power spectra.
Our results show that independently of the spin, the ER axisym-
metric setup yields power spectra with the pair of dominant PSD
peaks corresponding to the frequencies of radial and vertical os-
cillation modes with a proper ratio equal to 3:2, except some
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special cases of very high or very low distant observer inclina-
tions, where higher harmonics becomes prominent. The predic-
tions of the RP-like non-axisymmetric setup are almost identical
to the ER case for zero or moderate spin configurations. An un-
stable high-spin RP-like configuration with the torus located in
the ergosphere exhibits dominant PSD peaks pair corresponding
to the frequency of radial oscillation modes and its second har-
monics in the whole range of inclinations, so it predicts a con-
stant frequency ratio equal to 1:2. The entire change of the op-
tical projection is also documented by the different iron Kα line
profiles with respect to the previous cases.

The analysis presented in the article primarily focused on
the relative ratios of the amplitudes of the most prominent fre-
quency peaks in the modelled power spectra. However, the ab-
solute fractional rms of the amplitudes of HF QPOs peaks in the
detected signal depends not only on the amplitudes of perturba-
tion Ar,θ, but also on the relations of individual components of
the whole total source flux. In Bakala et al. (2014) we defined an
empirical model of total source flux, which mimics the so-called
high steep power-law (HSPL) state in GRS 1905+105, includ-
ing steep spectrum and power-law-dominated variability with
an additional broad Lorentzian component at low frequencies
(McClintock & Remillard 2006). Then we used this background
to analyse the resolution of HF QPO peaks for a similar but
simpler model of oscillating slender torus in the Schwarzschild
geometry (Bursa et al. 2004), slowly passing the resonant or-
bit r0. Considering the capabilities of the RXTE and LOFT in-
struments simulated by their response matrices, we showed that
the presently available observational technology enables a good
detection of the pair of the most prominent peaks in such a mod-
elled signal. Nevertheless, the behaviour of spectral content of
less distinct PSD peaks probably remains the key task for the
data analysis of future sensitive space observatory missions for
X-ray timing, such as the proposed LOFT mission (see Bakala
et al. 2014; Feroci et al. 2014; Karas et al. 2014, for details).

Our simulation yields iron Kα line profiles that are very dif-
ferent from the line profile integrated over the entire accretion
disk. Therefore, the next related topic for future space X-ray mis-
sions can be sensitive frequency-resolved spectroscopy, which
will be able to isolate the spectral component oscillating on the
QPO frequency (see e.g. Axelsson et al. 2014; Revnivtsev et al.
1999). Phase-resolved spectroscopy that traces the iron line pro-
file changes throughout an oscillation cycle could be another po-
tentially interesting diagnostic tool. This idea has already been
suggested for the case of low-frequency QPOs (e.g. Ingram &
Done 2012b; Tsang & Butsky 2013), but its application for the
studied model of HF QPO driven by slender torus oscillations
will require a more detailed future study.

We assume an optically thick slender torus, and thus the in-
fluence of the torus opacity can also be the subject for our fu-
ture research. It is possible to generalise the examined slender
torus model by considering the pressure effects on the mode
frequencies and the torus shape (Straub & Šrámková 2009). In
our study, the location of the torus centre is empirically cho-
sen using the observed twin peaks HF QPOs ratio. The resonant
coupling of oscillation modes can prefer particular values of ra-
dial coordinate for amplification or excitation of QPOs (Horák
2008). Therefore, further important improvements in the simu-
lations can incorporate mode-resonant coupling. Future imple-
mentation of improved models of non-slender tori into the used
LSDplus code can be the next step towards more realistic re-
sults. A future detailed comparative study of spectral harmonic
content can also be devoted to the possibility of distinguishing

between QPOs models based on either accretion tori oscillations
or the orbital motion of radiating blobs.
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Pecháček, T., Goosmann, R. W., Karas, V., Czerny, B., & Dovčiak, M. 2013,
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ABSTRACT

The Resonant Switch (RS) model of twin high-frequency quasi-periodic oscillations (HF QPOs)
observed in neutron star binary systems, based on switch of the twin oscillations at a resonant point,
has been applied to the atoll source 4U 1636–53 under assumption that the neutron star exterior can
be approximated by the Kerr geometry. Strong restrictions of the neutron star parametersM (mass)
and a (spin) arise due to fitting the frequency pairs admitted by the RS model to the observed data
in the regions related to the resonant points. The most precise variants of the RS model are those
combining the relativistic precession frequency relations with their modifications. Here, the neutron
star mass and spin estimates given by the RS model are confronted with a variety of equations of
state (EoS) governing structure of neutron stars in the framework of the Hartle–Thorne theory of
rotating neutron stars applied for the observationally given rotation frequencyfrot ≈ 580 Hz (or
alternatively frot ≈ 290 Hz) of the neutron star in 4U 1636–53. It is shown that onlytwo variants of
the RS model based on the Kerr approximation are compatible with two EoS applied in the Hartle–
Thorne theory forfrot ≈ 580 Hz, while no variant of the RS model is compatible forfrot ≈ 290 Hz.
The two compatible variants of the RS model are those giving the best fits of the observational data.
However, a self-consistency test by fitting the observational data to the RS model with oscillation
frequencies governed by the Hartle–Thorne geometry described by three spacetime parametersM,a
and (quadrupole moment)q related by the two available EoS puts strong restrictions. The test admits
only one variant of the RS model of twin HF QPOs for the Hartle–Thorne theory with the EoS
predicting the parameters of the neutron starM ≈ 2.10 M⊙ , a≈ 0.208, andq/a2 ≈ 1.77.

Key words: Accretion, accretion disks – Stars: neutron – X-rays: binaries

1. Introduction

The high-frequency quasi-periodic oscillations (HF QPOs)in the Galactic Low
Mass X-Ray Binaries (LMXBs) containing neutron (quark) stars are often demon-
strated as two simultaneously observed pairs of peaks (twinpeaks) in the Fourier
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power spectra corresponding to oscillations at the upper and lower frequencies
(νU,νL) that substantially change over time (even in one observational sequence).
Most of the twin HF QPOs in the so-called atoll sources (van der Klis 2006)
have been detected at lower frequencies 600–800 Hzvs. upper frequencies 900–
1200 Hz, demonstrating a clustering of the twin HF QPOs frequency ratio around
3 : 2 (Abramowiczet al.2003, 2005, Belloniet al.2007, Töröket al.2008ab, Mon-
tero and Zanotti 2012, Wanget al.2013, Stefanov 2014).1

For some atoll neutron star sources the upper and lower HF QPOfrequen-
cies can be traced along the whole observed range, but the probability to detect
both QPOs simultaneously increases when the frequency ratio is close to ratio of
small natural numbers, namely 3 : 2, 4 : 3, 5 : 4 (Török 2009). The analysis of root-
mean-squared-amplitude evolution in the group of six atollsources (4U 1636–53,
4U 1608–52, 4U 0614+09, 4U 1728–34, 4U 1820–30, 4U 1735–44) shows that
the upper and lower HF QPO amplitudes equal each other and alter their dom-
inance while passing rational frequency ratios (3 : 2 or 4 : 3)corresponding to
the datapoints clustering (Török 2009). Such an “energy switch effect” can be
well explained in the framework of non-linear resonant orbital models as shown
in Horák et al. (2009). Another interesting phenomenon related to energy of the
twin HF QPOs has been recently demonstrated in Mukherjee andBhattacharyya
(2012). Further, analysis of the twin peak HF QPO amplitudesin the atoll sources
(4U 1636–53, 4U 1608–52, and 4U 1820–30, 4U 1735–44) indicates a cut-off at
resonant radii corresponding to the frequency ratios 5 : 4 and 4 : 3 respectively, im-
plying a possibility that the accretion disk inner edge is located at the innermost
resonant radius rather than at the innermost stable circular geodesic (ISCO, Stuch-
lík et al.2011). The situation is different for some of the Z-sources where the twin
peak frequency ratios are clustered close to 2 : 1, and 3 : 1 ratios as demonstrated in
the case of Circinus X-1 (Boutloukoset al. 2006). Then the resonant radii could
be expected at larger distance from the ISCO than in the atollsources (Töröket al.
2010).

The evolution of the lower and upper twin HF QPOs frequenciesin the atoll and
Z sources suggests a rough agreement of the data distribution with the so-called hot
spot models of HF QPOs,e.g., the Relativistic Precession (RP) model prescribing
the evolution of the upper frequency by the Keplerian frequency νU = νK and the
lower frequency by the precession frequencyνL = νK −νr (Stella and Vietri 1998,
1999) governed by the radial epicyclic frequency of geodetical circular motion.
In rough agreement with the data are other models based on theassumption of
the oscillatory motion of hot spots, or accretion disk oscillations, with oscillatory
frequencies given by the geodetical orbital and epicyclic motion. They include

1In the black hole sources, twin peaks with fixed pair of frequencies at the ratio 3 : 2 are usually
observed and can be explained by the internal non-linear resonance of oscillations with radial and
vertical epicyclic frequencies (Töröket al.2005).
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the modified RP1 model (Bursa 2005), the Total Precession (TP) model (Stuchlík
et al. 2007), the Tidal Disruption (TD) model (Kostić et al. 2009), or the Warp
Disk oscillations (WD) model (Kato 2008). In all of them the frequency difference
νU−νL decreases with increasing magnitude of the lower and upper frequencies, in
accord with the observational data (Belloniet al.2007, Barretet al.2005a, Töröket
al. 2012). This property of the observational data excludes theepicyclic oscillations
model assumingνU = νθ and νL = νr (Urbanecet al. 2010b) that works well in
the case of HF QPOs in black hole LMXBs (Töröket al.2005).2

The νU/νL frequency relations, given by the models mentioned above, can be
compared to the observational data found for neutron star LMXBs, e.g., data of
the atoll source 4U 1636–53 (Barretet al. 2005a, Töröket al. 2008ab), or the Z-
source Circinus X-1 (Boutloukoset al. 2006). The parameters of the neutron star
spacetime can be then determined due to the fits of the data to the frequency-relation
models. The rotating neutron stars are described properly by the Hartle–Thorne
geometry (Hartle and Thorne 1968) characterized by three parameters: massM ,
internal angular momentumJ and quadrupole momentQ, or by dimensionless
parametersa= J/M2 (spin) andq= QM/J2 . In the special case whenq/a2 = 1,
the Hartle–Thorne external geometry reduces to the well known Kerr geometry if it
is expanded up to the second order ina. The Kerr approximation is very convenient
for calculations in strong gravity regime because of simplicity of relevant formulae.
It has been recently shown that near-maximum-mass neutron (quark) star Hartle–
Thorne models, constructed for any given equation of state (EoS), implyq/a2 ≈ 1
and the Kerr geometry is applicable with high precision in such situations instead of
the Hartle–Thorne geometry (Urbanecet al.2013, Töröket al.2010). Such high-
mass neutron stars can be expected at the LMXB systems due to the mass increase
caused by the accretion process.

Assuming the geodesic orbital and epicyclic frequencies related to the Kerr ge-
ometry, the fitting procedure applied to the RP model of the frequency-relation evo-
lution implies mass–spin relationM(a) = M0

[
1+k(a+a2)

]
rather than concrete

values of the neutron star parametersM anda. For the Z-source Circinus X-1 there
is M0 ≈ 2.2 M⊙ and k ≈ 0.5 (Töröket al.2010). The same mass–spin relations,
but with different values of the Schwarzschild (no-rotation) massM0 ≈ 1.8 M⊙
and the constantk ≈ 0.75, were obtained for the atoll source 4U 1636–53 (Török
et al.2012). In the case of the models similar to the RP model (RP1, TP), the same
M(a) relations were found, while for the models TD and WD, the relations are dif-
ferent – for details see Töröket al. (2012). Quality of the fits to the data obtained

2Note that quite recently a special frequency set of HF QPOs has been reported for the neutron
star binary system XTE J1701–407 that is one of the least luminous atoll sources withLX ≈ 0.01LEdd
(Pawaret al.2013). This frequency set resembles observations of the HF QPOs in the microquasars,
i.e., black hole binary systems, and it can be explained by the model of string loop oscillations (Stuch-
lík and Kološ 2015) that works quite well also in the case of Galactic microquasars GRS 1915+105,
XTE 1550–564, GRO 1655–40 (Stuchlík and Kološ 2014).
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for individual models is very poor for the atoll source 4U 1636–53. This fact is ex-
tensively discussed in Töröket al.(2012). Bad fitting of observational data with the
frequency-relation models was found also in Linet al. (2011) for the atoll source
4U 1636–53 and the Z-source Sco X-1 for some models of the HF QPOs with the
frequency relations given by some phenomena of non-geodesic origin (Miller et al.
1998, Zhanget al.2006, Mukhopadhyay 2009, Shi 2011).

The bad fitting of the data distribution in the atoll sources by the frequency-
relation models of HF QPOs based on the assumption of the geodesic character of
the oscillatory frequencies invoked attempts to find a correction of a non-geodesic
origin reflecting some important physical ingredients, as influence of the mag-
netic field of the neutron star onto slightly charged innermost parts of the disk
(Bakalaet al. 2010, Ková̌r et al. 2008), of thickness of non-slender oscillating
tori (Straub and Šrámková 2009), or of oscillating string loop model (Stuchlík and
Kološ 2012, 2014, Cremaschini and Stuchlík 2013). Such modifications of the
frequency-relation models could make the fitting procedurebetter as shown for a
simple toy model in Töröket al. (2012). However, in all these cases, some addi-
tional free parameter has to be introduced along with the spacetime parameters of
the neutron star. Some relevant modifications can be also obtained in the frame-
work of models related to the braneworld compact objects (Stuchlík and Kotrlová
2009, Schee and Stuchlík 2009).

Therefore, the Resonant Switch (RS) model of twin peak HF QPOs has been re-
cently proposed modifying the standard orbital frequency relation models in a way
that allows keeping the assumption of the relevant frequencies being combinations
of the geodesic orbital and epicyclic frequencies. No non-geodesic corrections are
necessary in the RS model, although these are not excluded (Stuchlík et al. 2012,
2013) – the RS model considers only the spacetime parametersof the neutron star
exterior as free parameters. The RS model has been applied inthe case of the atoll
source 4U 1636–53 (Stuchlíket al.2012) and tested for this atoll source by fitting
the observational data using the frequency relations predicted by the RS model as
acceptable due to the neutron star structure theory (Stuchlík et al.2014).

The fitting procedure predicts the mass and spin parameters of the 4U 1636–53
neutron star with relatively high precision (Stuchlíket al.2014). Here we test the
frequency relation pairs of the RS model giving the best fits for the corresponding
values of the massM and spina of the neutron star, using variety of equations of
state considered recently in modeling the rotating neutronstars in the framework
of the Hartle–Thorne theory. Strong limits implied by the Hartle–Thorne mod-
els can be obtained due to the precise knowledge of the rotation velocity of the
4U 1636–53 neutron star (Strohmayer and Markwardt 2002). Weare then able to
put strong restrictions on validity of the acceptable frequency-relation variants of
the RS model.
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2. Resonant Switch Model of Twin HF QPOs in the 4U 1636–53 Atoll Source

2.1. The RS model

We briefly summarize the basic ideas of the RS model – for details see Stuchlík
et al. (2012, 2013). According to the RS model a switch of twin oscillatory modes
creating sequences of the lower and upper HF QPOs occurs at a resonant point.
Non-linear resonant phenomena are able to excite a new oscillatory mode (or two
new oscillatory modes) and damp one of the previously actingmodes (or both the
previous modes).3 Switching from one pair of the oscillatory modes to some other
pair will be relevant up to the following resonant point where the sequence of twin
HF QPOs ends.

Here, two resonant points at the disk radiixout and xin are assumed (x =
r/(GM/c2) is the dimensionless radius, expressed in terms of the gravitational
radius), with observed frequenciesνout

U , νout
L andνin

U , νin
L , being in commensurable

ratios pout = nout : mout and pin = nin : min . Observations of the twin HF QPOs in
the atoll systems put the restrictionsνin

U > νout
U and pin < pout (Török 2009). In the

region related to the resonant point atxout, the twin oscillatory modes with the up-
per (lower) frequency are determined by the functionsνout

U (x;M,a) , (νout
L (x;M,a) .

In the region related to the inner resonant point atxin different oscillatory modes
given by the frequency functionsνin

U(x;M,a) and νin
L (x;M,a) occur. All the fre-

quency functions are assumed to be combinations of the orbital and epicyclic fre-
quencies of the geodesic circular motion in the Kerr backgrounds. Such a simpli-
fication is correct with high accuracy for neutron (quark) stars with large masses,
close to maximum allowed for a given equation of state (Töröket al.2010, Urbanec
et al.2013), that can be assumed in the known atoll or Z-sources because of mass
increasing due to the accretion. Of course, for neutron stars having mass signifi-
cantly lower than the maximal allowed mass, the Hartle–Thorne external geometry
reflecting also the role of the quadrupole moments of the neutron star has to be
taken into account (Urbanecet al.2013, Gondek-Rosińskaet al.2014).

In the Kerr spacetime, the vertical epicyclic frequencyνθ and the radial epicyclic
frequencyνr take the form (e.g., Perezet al. 1997, Stella and Vietri 1998, Török
and Stuchlík 2005)

ν2
θ = αθ ν2

K , ν2
r = αr ν2

K (1)

where the Keplerian (orbital) frequencyνK and the dimensionless quantities deter-

3Note that the switch could occur for other reasons,e.g., due to the phenomena related to the
magnetic field of neutron stars (Zhanget al.2006).
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mining the epicyclic frequencies are given by the formulae

νK =
1
2π

(
GM

r 3
G

)1/2(
x3/2+a

)−1
=

1
2π

(
c3

GM

)(
x3/2+a

)−1
, (2)

αθ = 1− 4a

x3/2
+

3a2

x2 , (3)

αr = 1− 6
x
+

8a

x3/2
− 3a2

x2 . (4)

Details of the properties of the orbital and epicyclic frequencies can be found in
Török and Stuchlík (2005), Stuchlík and Schee (2012). We cansee that any linear
combination of the orbital and epicyclic frequencies depends on the mass parameter
M in the same way, therefore, their frequency ratio becomes independent ofM .
Then the conditions

νout
U (x;M,a) : νout

L (x;M,a) = pout,

νin
U(x;M,a) : νin

L (x;M,a) = pin (5)

imply relations for the spina in terms of the dimensionless radiusx and the reso-
nant frequency ratiop that can be expressed asaout

p (x) andain
p (x) , or in an inverse

form xout
p (a) andxin

p (a) .
The frequency relation functions have to meet the resonant frequencies that can

be determined by the energy switch effect (Török 2009, Stuchlík et al. 2012). In
the RS model applied here, two resonant points and two pairs of the frequency
functions are assumed. This enables direct determination of the Kerr background
parameters assumed to govern the exterior geometry of the neutron (quark) star. At
the resonant radii the conditions

νout
U = νout

U (x;M,a) , νin
U = νin

U(x;M,a) (6)

are satisfied along the functionsMout
pout

(a) andMin
pin
(a) . The parameters of the neu-

tron (quark) star are then given by the condition (Stuchlíket al.2012)

Mout
pout

(a) = Min
pin
(a). (7)

This condition predictsM and a with precision implied by the error occurring in
determination of the resonant frequencies by the energy switch effect that is rather
high for the observational data obtained at present state ofthe observational devices
(see Török 2009, Stuchlíket al. 2012). However, the fitting of the observational
data by the frequency relations predicted by the RS model improves substantially
the precision of determination of the neutron star parameters and, simultaneously,
restricts the versions of the RS model that can be consideredas realistic.

Starting from the results obtained in Stuchlíket al. (2012), we consider in the
present paper pairs of the frequency relations given by the RP model (Stella and Vi-
etri 1998, 1999), the TP model (Stuchlíket al.2007), and their modifications RP1
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(Bursa 2005), and TP1, combined also with the TD model (Kostić et al.2009), and
the WD model (Kato 2008). The frequency relations are summarized in Table 1. In
the RS model applied to the source 4U 1636–53 the frequency relations are com-
bined, and the switch of their validity occurs at the outer resonant point as described
in Stuchlíket al. (2012). For each of the frequency relations under consideration
the frequency resonance functions and the resonance conditions determining the
resonant radiixn:m(a) are given in Stuchlíket al. (2012).

T a b l e 1

Frequency relations corresponding to individual HF QPO models

Model Relations

RP νL = νK −νr νU = νK

RP1 νL = νK −νr νU = νθ

TP νL = νθ −νr νU = νθ

TP1 νL = νθ −νr νU = νK

TD νL = νK νU = νK +νr

WD νL = 2(νK −νr) νU = 2νK −νr

2.2. Application to the Source 4U 1636–53

The massM and spina ranges predicted by the RS model with resonant fre-
quencies given by the energy switch effect are very large (see Table 1 in Stuchlíket
al. 2012). However, the ranges can be strongly restricted by fitting the observational
data near the resonant points by the pairs of the frequency relations corresponding
to the twin oscillatory modes. We use the data of twin HF QPOs in the 4U 1636–
53 source as presented and studied in Töröket al. (2012), analyzed in the original
papers by Barretet al.(2005a,b) – in this case it is immediately clear what is the ex-
tension of the data related to the resonant points with frequency ratio 3 : 2 and 5 : 4,
respectively. In the fitting procedure, based on the formulae related to the Kerr
spacetime, we applied those switched twin frequency relations predicted by the RS
model that are acceptable due to the neutron (quark) star structure theory (Stuch-
lík et al.2012, 2014). All the resulting twin frequency relations considered in our
testing are presented in Table 2 where the values of the massM and spina of the
neutron star predicted by the RS model and the related fittingprocedure presented
in Stuchlíket al.(2014) are explicitly given along with the corresponding errors. In
fitting the observational data, the standard least-squares(χ2) method (Presset al.
2007) has been applied. In the space of the lower and upper frequencies,νL and
νU , the χ2-test represents the minimal (squared) distance of the frequency relation
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curveνU(νL) given by a model of the twin HF QPOs from the observed set of data
points:

χ2 ≡
m

∑
n=1

∆2
n , ∆n = Min

(
ln,p
σn,p

)pISCO

p∞

(8)

where ln,p is the length of a line between the centroid values of thenth measured
data point[νL(n),νU(n)] and a point[νL(p(n)),νU(p(n))] belonging to the rele-
vant frequency curve of the model; the points are considereddown to the point
corresponding to the ISCO. The quantityσn,p denotes the length of the part of this
line located within the error ellipse around the data point (Presset al.2007).

The χ2-test has been applied solely for the RP, TP and TD frequency relations
along the whole range of the observational data in Töröket al. (2012). However,
the results were quite unsatisfactory, givingχ2 ≈ 350 andχ2/dof ≈ 16. On the
other hand, the RS model enables increase of the fit precisionby almost one order,
giving in the best casesχ2 ≈ 55 andχ2/dof≈ 2.6 (Stuchlíket al.2014).4

T a b l e 2

The best fits of the observational data and the correspondingspin and mass parameters of the
neutron star located in the 4U 1636–53 source, along with related errors in determining spin and

mass of the neutron star due to the fitting procedure

Combination of models χ2
min a ∆a M [M⊙] ∆M [M⊙]

RP1(3:2) + RP(5:4) 55 0.27 0.02 2.20 0.04

TP(3:2) + RP(5:4) 55 0.52 0.02 2.87 0.06

RP1(3:2) + TP1(5:4) 61 0.20 0.01 2.12 0.03

RP1(3:2) + TP(5:4) 62 0.45 0.03 2.46 0.06

TP(3:2) + TP1(5:4) 68 0.31 0.02 2.39 0.05

RP(3:2) + TP1(5:4) 72 0.46 0.03 2.81 0.09

WD(3:2) + TD(5:4) 113 0.34 0.08 2.84 0.21

The results are taken, as the most promising ones, from Stuchlík et al.
(2014). The two cases of the neutron star parameters that arein agree-
ment with the Hartle–Thorne model of the neutron stars are shaded.
They are those corresponding to the best fits of the observational data
of twin HF QPOs.

The massM and spina ranges determined by the fitting procedure in Stuchlík
et al. (2014) for acceptable combinations of frequency-relationpairs are illustrated

4The fitting procedure has been realized in the ranges ofM and a predicted by the RS model
with data given by the energy switch effect, but we convincedourselves that outside these ranges the
fits are worse than inside of them.
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in Figs. 1 and 2 and summarized in Table 2. The best fit is obtained for the combi-
nation of frequency pairs RP1+RP.

The results of the fitting procedure will be further tested byconfrontation with
detailed Hartle–Thorne theoretical models (Hartle and Thorne 1968, Chandrasekhar
and Miller 1974, Miller 1977) describing slowly rotating neutron stars that are con-
structed under the observationally given constraint of therotation frequency 580 Hz
(or 290 Hz) relevant for the 4U 1636–53 neutron star (Strohmayer and Markwardt
2002), using the variety of widely accepted equations of state that were studied in
Urbanecet al. (2013). We assume a detailed test of a much more extended family
of acceptable equations of state in a future paper.

The results of the RS model have to be related in future to the limits on the
4U 1636–53 neutron star parameters indicated by other possible observational phe-
nomena. In fact, a preliminary result of simultaneous treatment of the twin peak
HF QPOs and profiled (X-ray) spectral lines indicates the neutron star mass to be
M ≈ 2.4 M⊙ (Sannaet al.2012) that gives an important restriction on the results
of the RS model and restricts substantially the variety of allowed combinations of
frequency relations used in the RS model. However, we clearly need more detailed
study of the profiled spectral lines based on the precise predictions of the character
of the external spacetime of the neutron star.

3. Hartle–Thorne Model of Rotating Neutron Stars

The Hartle–Thorne theory represents a standard approximate method of con-
structing models of compact stars (neutron stars, quark stars, white dwarfs) within
general relativity, assuming rigid and slow rotation of thestars (Hartle 1967, Hartle
and Thorne 1968). It is treating deviations away from the spherical symmetry as
perturbations with terms up to a specified order of the rotational angular velocity
Ω of the compact star. Going up to second order inΩ , the theory gives the lowest
order expressions for the frame draggingω , the moment of inertiaI = J/Ω , with
J denoting the angular momentum of the star, the shape distortion caused by cen-
trifugal effects, the quadrupole momentQ and the change in the gravitational mass
due to rotationδM . Recent results indicate that the slow rotation approach isquite
correct for all the observed rotating neutron stars, even inthe case of the fastest
observed pulsar PSR J1748–2446ad with rotational frequency ≈ 716 Hz (Urbanec
et al. 2013). For very fast rotation only, near to that giving centrifugal break-up,
we have to solve numerically the full set of the Einstein equations rather than us-
ing the approximate approach of Hartle–Thorne theory – see models presented in
Bonazzolaet al. (1998) and Stergioulas (2003).

For our purposes, the second-order slow-rotation Hartle–Thorne approximate
theory developed in Hartle and Thorne (1968) and Chandrasekhar and Miller (1974)
is quite appropriate because of the rotation frequency observed for the neutron star
in 4U 1636–53. Then the Hartle–Thorne geometry describing both the internal and
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external spacetime takes in the geometric units with c= G= 1 the form

ds2 = −e2ν0 [1+2h0(r)+2h2(r)P2(θ)] dt2

+e2λ0

{
1+

e2λ0

r
[2m0(r)+2m2(r)P2(θ)]

}
dr2

+r2 [1+2k2(r)P2(θ)]
{

dθ2+[dφ−ω(r)dt]2sin2 θ
}

(9)

whereν0 , λ0 and the coordinates are identical with corresponding spherical non-
rotating solution,ω(r) is a perturbation of orderΩ , representing the frame drag-
ging, andh0(r) , h2(r) , m0(r) , m2(r) , k2(r) are perturbations of orderΩ2 . All of
these perturbations are functions of the radial coordinateonly. The non-spherical
angular dependence is determined by the second-order Legendre polynomialP2(θ)=
1
2

(
3cos2 θ−1

)
.

All the perturbation functions have to be calculated under appropriate boundary
conditions at the center and at the surface of the compact star. The second-order
perturbations are labeled with a subscript indicating their multipole order: l = 0
for spherical perturbations,l = 2 for the quadrupole perturbations representing the
deviation away from the spherical symmetry. By matching theinternal and external
solution at the star surface, the external parameters of thecompact star as measured
by distant observers can be calculated: the massM , angular momentumJ and
quadrupole momentQ that fully characterize the external gravitational field inthe
slow-rotation approximation, if one is retaining only perturbations up to the second
order.

To construct the internal solution, the Einstein equationsare solved with the
source term given by the energy momentum of a perfect fluid. Rigid rotation of
an axisymmetric configuration means that the four velocity has components

U t =
[
−
(
gtt −2Ωgtφ +Ω2gφφ

)]1/2
, Uφ = ΩU t . (10)

The derivation of the equations for the perturbation quantities together with bound-
ary conditions was given in detail in Hartle and Thorne (1968), Chandrasekhar and
Miller (1974), Miller (1977). We will not repeat this in the present paper. We use
the same procedures as those presented in Miller (1977).

4. Equations of State

The crucial ingredient of the compact star models is the equation of state de-
scribing properties of matter constituting them. Neutron stars are expected to con-
sist of neutrons closely packed inβ-equilibrium with protons, electrons and at high
densities also muons, hyperons, kaons and possibly other particles. Their central
densities correspond to microphysics that is not well understood, therefore, they
serve as laboratories of nuclear matter under extreme conditions, giving comple-
mentary information to those obtained in the collider experiments.
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A wide range of approaches for nucleon-nucleon interactions and their role
in modeling of the structure of neutron stars has been used – see the review by
Lattimer and Prakash (2007). An alternative to the standardneutron star picture
is represented by quark stars consisting partially or fullyfrom deconfined quarks.
The most radical version of this approach is represented by strange stars consisting
entirely from deconfined quarks (Farhi and Jaffe 1984, Haensel et al. 1986, Colpi
and Miller 1992). It is based on the suggestion of Witten (1984) that matter consist-
ing of equal numbers of up, down and strange quarks representthe absolute ground
state of strongly interacting matter. It is important to mention that the strange stars
have to be bound together by a combination of the strong and gravitational forces,
in contrast to neutron stars where only the gravity is responsible for the binding.
Here we restrict attention on the equations of state governing the neutron stars only.

We consider a set of neutron-star matter equations of state that are based on var-
ious approaches – following the recent study of the neutron star properties related
to the behavior of the quadrupole moment (Urbanecet al. 2013). We give a brief
review of these equations of state, details can be found in Urbanecet al.(2013) and
the original literature.

We choose relatively wide set of Skyrme parameterizations,whose labels are
starting with S; see Stoneet al. (2003) for details of Skyrme potential and dif-
ferences between various parameterizations. We use two variants of APR model
based on the variational theory reflecting the three body forces and the relativis-
tic boost corrections (Akmalet al. 1998). APR corresponds toA18+ δv+UIX ∗ ,
while APR2 corresponds toA18+UIX, where relativistic boost corrections are not
included. The UBS equation of state is based on the relativistic Dirac–Brueckner–
Hartree–Fock mean field theory (Urbanecet al. 2010a) and corresponds to model
originally labeled as H. The non-relativistic Brueckner–Hartree–Fock theory is rep-
resented by the equation of state labeled as BBB2 (Baldoet al.1997). We also use
GlendNH3 (Glendenning 1985) and BalbN1H1 (Balberg and Gal 1997) equation
of state including the hyperons at high densities. FPS is thevery well know EoS
and has been used very often in the past (Lorenzet al.1993) and BPAL12 is very
soft EoS giving very low maximum mass (Bombaci 1995). Stiff equations of state
were recently constructed in the framework of the auxiliaryfield diffusion Monte
Carlo technique and are labeled as Gandolfi (Gandolfiet al. 2010). Our selection
of EoS represents wide range of possible models. However, some of these do not
meet current observations (Steineret al. 2010, Demorestet al. 2010, Antoniadis
et al. 2013). Here, we focus on the selection of the acceptable variants of the RS
model of QPOs using the Hartle–Thorne theory of neutron stars that is properly
applied to the restricted set of the equations of state.

It is useful to give the maximal values of the neutron star parametersM and
a obtained in the framework of different approaches to the equation of state. It
follows from general relativistic restrictions that mass of a neutron star cannot ex-
ceedMmax ≈ 3 M⊙ (Rhoades and Ruffini 1974). The realistic equations of state
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put limit on the maximal mass of neutron starsMmaxN≈ 2.8 M⊙ (Postnikovet al.
2010) – the extremal maximumMmaxN≈ 2.8 M⊙ is predicted by the field theory
(Müller and Serot 1996). The limit ofMmaxN≈ 2.5 M⊙ is predicted by the Dirac–
Brueckner–Hartree–Fock approach in some special case (Müther et al. 1987) or
by some Skyrme models. The variational approaches (Akmal and Pandharipande
1997, Akmalet al. 1998) and other approaches (Urbanecet al. 2010a) allow for
MmaxN≈ 2.25 M⊙ .

On the neutron star dimensionless spin the limit ofa< amaxN= 0.7 has been
recently reported on the basis of numerical, non-approximate methods, indepen-
dently of the equation of state (Lo and Lin 2011). The Hartle–Thorne theory can
be well applied up to the spina≈ 0.4 (Urbanecet al.2013).

In the Hartle–Thorne models of rotating neutron stars the spin of the star is lin-
early related to its rotation frequency. The rotation frequency of the neutron star at
the atoll source 4U 1636–53 has been observed atfrot ≈ 580 Hz (or frot ≈ 290 Hz
if we observe doubled radiating structure, Strohmayer and Markwardt 2002). Such
a rotation frequency is sufficiently low in comparison with the mass shedding fre-
quency, and the Hartle–Thorne theory can be applied quite well, predicting spins
much lower than the maximally allowed spin. The theory of neutron star structure
then implies for a wide variety of realistic equations of state the spin in the range
(Stergioulas 2003, Urbanecet al.2013)

0.1< a< 0.4. (11)

Of course, the upper part of the allowed spin range corresponds to the rotation
frequency frot ≈ 580 Hz, while the lower part corresponds tofrot ≈ 290 Hz. The
related restriction on the neutron star (near-extreme) mass reads

M < 2.8 M⊙. (12)

Detailed comments on the precision of the Kerr geometry approximating the
Hartle–Thorne geometry in dependence on the spacetime parametersa and q/a2

can be found in Stuchlík and Kološ (2015). For the HF QPO models the differ-
ences induced by the Kerr approximation could be smaller than five percent for the
dimensionless spina< 0.4.

5. Testing the RS Model by Equations of State Applied in the
Hartle–Thorne Model of the Neutron Star in the Source 4U 1636–53

5.1. Selection of the Relevant Variants of the RS Model

The resulting limits on the massM and spina of the 4U 1636–53 neutron star
implied by the data fitting procedure realized in the framework of the RS model of
HF QPOs are presented in Table 2 taken from Stuchlíket al. (2014) and reflected
in Figs. 1 and 2. The precision of the mass and spin estimates is also reflected in
Figs. 1 and 2. The Hartle–Thorne models are constructed for avariety of acceptable
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equations of state discussed above (and studied in Urbanecet al. 2013) for both
possible rotational frequencies of the 4U 1636–53 neutron star. We use nine pa-
rameterizations of the Skyrme equation of state (SkT5, Sk0’, Sk0, SLy4, Gs, SkI2,
SkI5, SGI, SV) and other nine equations of state (UBS, APR, FPS, BBB2, BPAL12,
BalbN1H1, GlendNH3, Gandolfi, APR2) that well represent thevariety of equa-
tions of state. The results of the Hartle–Thorne model that are calculated for the
equations of state under consideration are illustrated in the M−a plane in Fig. 1 for
both the assumed neutron star rotation frequenciesfrot≈ 290 Hz andfrot≈ 580 Hz.
Clearly, all the mass-spin dependencies constructed forfrot ≈ 290 Hz can be ex-
cluded. In Fig. 2 we give detailed picture of fitting the mass and spin range implied
by the acceptable variants of the RS model by thea(M) curves constructed for the
acceptable EoS with the rotation frequencyfrot ≈ 580 Hz.

We immediately see that no equation of state allows to construct a Hartle–
Thorne model that can fit the RS model data, if we assume the rotational frequency

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1.5 2 2.5 3

a

M/M

Fig. 1. Hartle–Thorne models of neutron stars with rotationfrequency frot ≈ 290 Hz (red) andfrot ≈
580 Hz (blue), for a variety of EoS considered in Urbanecet al. (2013): SkT5, Sk0’, Sk0, SLy4, Gs,
SkI2, SkI5, SGI, SV – Skyrme equations (Stoneet al.2003), UBS equation (Urbanecet al.2010a),
FPS equation (Lorenzet al. 1993), APR (Akmalet al. 1998), BBB2 equation (Baldoet al. 1997),
BPAL12 equation (Bombaci 1995), BalbN1H1 equation (Balberg and Gal 1997), GlendNH3 equation
(Glendenning 1985), APR2 equation (Akmalet al.1998), Gandolfi equation (Gandolfiet al.2010).
Each equation of state applied in the Hartle–Thorne model predicts for a fixed rotational frequency
a sequence of stable states represented by a curve in theM−a plane. Its final point indicates an
instability. Clearly, all predicted values of the 4U 1636–53 neutron star spacetime parametersM , a
related to frot ≈ 290 Hz are located outside the predictions of the Hartle–Thorne models.

136 Collection of the papers



182 A. A.

0.18

0.2

0.22

0.24

0.26

0.28

0.3

1.2 1.4 1.6 1.8 2 2.2 2.4

Gs

SV

Gandolfi

M/M

a

Fig. 2. Hartle–Thorne models of neutron stars with rotationfrequency frot ≈ 580 Hz are illustrated
for the a(M) dependencies related to the two best fits of the observational data by the RS model.
The acceptable sequences of equilibrium configurations predicted by the Hartle–Thorne model are
constructed for two equations of state (Skyrme SV EoS for RP1+RP variant, and Gandolfi EoS for
the RP1+TP1 variant). Notice that the variant of the RS modelpredicting the lower parameters of
M = 2.12 M⊙ anda= 0.20 is also very close to the final state given by the sequence ofequilibrium
states predicted by the Skyrme Gs EoS, indicating possibility of an instability of the neutron star in
the 4U 1636–53 system in near future.

of the 4U 1636–53 neutron starfrot ≈ 290 Hz. For the rotational frequencyfrot ≈
580 Hz, the Hartle–Thorne models give very interesting restrictions that are in
significant agreement with results of the fitting the HF QPO data in the framework
of the RS model. The Hartle–Thorne model based on the Skyrme equation of
state SV meets with high precision the prediction of the RP1+RP version of the
RS model that gives the best fit to the twin peak HF QPO data observed in the
4U 1636–53 source for the neutron star parametersM ≈ 2.20 M⊙ anda≈ 0.27.5

The Hartle–Thorne model based on the Gandolfi equation of state meets with high
precision the prediction of the RP1+TP1 version of the RS model that gives the
second best fit to the observational data of the twin HF QPOs in4U 1636–53 for a
neutron star having parametersM ≈ 2.12 M⊙ anda≈ 0.20. Notice that the variant
of the RS model giving the second best fit is in accord with another version of
the Skyrme equation of state (Gs) which predicts the neutronstar with parameters
M ≈ 2.11 M⊙ and a ≈ 0.20. Such a result demonstrates that the 4U 1636–53

5The same precision of the fit, namelyχ2 ≈ 55, is obtained for the TP+RP version of the RS
model. However, in this case the predicted mass and spin,M ≈ 2.87 M⊙ anda≈ 0.52, are outside
the values acceptable by the neutron star models.

6.4. Equations of State in the Hartle-Thorne Model of Neutron Stars 137



Vol. 65 183

neutron star could be in a state very close to an instability,as the neutron star mass
and spin indicated by the HF QPO data fitting procedure can correspond to the final
state of the evolution of the neutron stars rotating with thefrequencyfrot ≈ 580 Hz
and governed by the Skyrme equation of state Gs – see Fig. 2. Predictions of all
the other variants of the RS model are located in theM−a plane at positions that
are evidently out of the scope of all the equations of state considered in the present
paper. We can expect that this is true also for all other variants of the presently
known equations of state.

5.2. Parameters and the Shape of the Neutron Star

Shape of isobaric surfacesP= const and the shape of the neutron star surface
P= 0 are given by

r(P= const,θ) = r0(P)+ξ0(r0)+ξ2(r0)P2(cosθ) (13)

where r0 is the spherical coordinate and functionsξ0 and ξ2 are given by the
relations (Miller 1977)

ξ0(r) =
r[r −2m(r)]p0

4πr3P+m(r)
, (14)

ξ2(r) =
r[r −2m(r)]p2

4πr3P+m(r)
(15)

and

p2(r) =−h2(r)−
1
3

r2e−2ν0ω2. (16)

The calculations were performed using the detailed set of equations presented in
Miller (1977). Then equatorial and polar radii governing the surface shape of the
rotating neutron star read

Req= R0(P)+ξ0(R0)−
1
2

ξ2(R0), (17)

Rpol = R0(P)+ξ0(R0)+ξ2(R0). (18)

The agreement of the Hartle–Thorne neutron star models based on the Skyrme
and Gandolfi equations of state with two best fits of the observational data of twin
HF QPOs observed in the source 4U 1636–53 enables to predict in detail prop-
erties of the neutron star in this source. Namely, we are ableto find along with
the two known parameters, massM and spina, also the radius in the equatorial
plane R(θ = π/2) and along the symmetry axisR(θ = 0) and whole the shape
of the neutron star surface, the moment of inertiaI , and quadrupole momentQ
and its dimensionless formq= QM/J2 . Then we can calculate also the parameter
representing compactness of the neutron stars in dependence on the latitude

Cθ =
R(θ)
2M

. (19)
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We can consider the characteristic values of the compactness parameter related to
the equatorial planeθ = π/2 and the symmetry axisθ = 0. Here we give for
simplicity the compactness parameter related to the basic,spherically symmetric
model that is a starting point of the Hartle–Thorne models, given by

C0 =
R0

2M0
. (20)

The results of the Hartle–Thorne model calculations for allthree equations of
state giving acceptable agreement with the data predicted by the RS model are pre-
sented in Table 3. For the Skyrme equation of state SV, and theGandolfi equation
of state, the neutron star parameters are given for the mass parameter corresponding
to the mean value of the data fitting (Stuchlíket al.2014). In the case of the Skyrme
equation of state Gs, the mass parameter of the neutron star (M ≈ 2.11 M⊙ ) cor-
responds to the maximal value predicted by this equation of state,i.e., it gives the
instability point of the neutron stars governed by this equation of state. This mass
parameter is lower than the related mean value given by the data fitting, but it falls
into the allowed range of the mass parameter.

T a b l e 3

Parameters of neutron stars predicted by the selected equations of state
giving Hartle–Thorne models compatible with the fitting of the twin

HF QPOs observed in 4U 1636–53

EoS M [M⊙] Req [km] a q q/a2 R0/(2M0)

Gandolfi 2.12 10.75 0.205 0.0723 1.71 1.72
Gs 2.11 10.84 0.201 0.0676 1.68 1.75
SV 2.20 13.41 0.272 0.1940 2.60 2.07

The mass is fixed to the mean value given by the fitting procedure with
exception of the Skyrme equation of state Gs where it corresponds to
the final state indicating an instability. The spin predicted by the Hartle–
Thorne model fits the range given by the error determined by the data
fitting. All models predict very compact neutron stars with low value of
the parameterq/a2.

6. Self-Consistency Test by the Hartle–Thorne Geometry

Assuming that the external geometry of the 4U 1636–53 neutron star can be ap-
proximated by the Kerr geometry, we have found that the two most precise variants
of the RS model can be fitted by realistic EoS applied in the Hartle–Thorne model
of slowly rotating neutron stars. For the RP1+RP variant, the Skyrme SV EoS
predictsM ≈ 2.20 M⊙ , a ≈ 0.272, q/a2 ≈ 2.60. For the RP1+TP1 variant, the
Gandolfi EoS predictsM ≈ 2.12 M⊙ , a≈ 0.205, q/a2 ≈ 1.71. For this RS vari-
ant, also the Skyrme Gs EoS gives acceptable values ofM ≈ 2.11 M⊙ , a≈ 0.201,
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q/a2 ≈ 1.68, however, this estimated mass parameter is at the maximumallowed
mass for the EoS.

We have to perform now a self-consistency test of the Kerr geometry approx-
imation applied in fitting the observational data. We have tocheck, if fitting the
observational data by theχ2-test using the orbital and epicyclic frequencies related
to the Hartle–Thorne geometry with parametersM, a, q governed by the acceptable
EoS gives results comparable or better than the fitting basedon the assumption of
the Kerr geometry approximation. We carry out the self-consistency test in the
following three steps.

First, we characterize the sequence of configurations givenby the Hartle–Thorne
model for the acceptable EoS and the rotational frequency ofthe neutron star
frot = 580 Hz – see Fig. 3. The free parameter is the massM and we represent
the sequence by the functionsa(M) and q/a2(M) . For each considered EoS we
show the Hartle–Thorne model forM > 1.2 M⊙ , and we follow the sequence of
allowed neutron stars to the limiting values of the parameters M, a, q/a2 corre-
sponding to the maximal allowed mass for the considered EoS.For each of the
EoS, the closest approach of the Hartle–Thorne model to the Kerr geometry occurs
for the maximal mass allowed by given EoS. We can see that closest approach to
the Kerr geometry is allowed for the Hartle–Thorne model based on the Gandolfi
EoS, enabling the lowest value ofq/a2 ≈ 1.5 for Mmax≈ 2.24 M⊙ . On the other
hand, the largest difference from the Kerr geometry approximation are expected for
the Skyrme SV model with the lowest value ofq/a2 ≈ 1.9. The maximal mass is
highest for this EoS, reachingMmax≈ 2.4 M⊙ .
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Fig. 3. Sequence of the Hartle–Thorne spacetime parametersimplied by the Gandolfi, Skyrme Gs
and Skyrme SV EoS for the rotational frequencyfrot = 580 Hz.Left: Spin (a) as a function of mass
(M ). Right: Reduced quadrupole moment (q/a2 ) as a function of mass (M ). All sequences are
constructed for the mass interval 1.2 M⊙ < M < Mmax.

Second, we define the orbital and epicyclic radial and vertical frequencies of
the quasicircular geodesic motion in the Hartle–Thorne geometry, νK(r;M,a,q) ,
νr(r;M,a,q) , νθ(r;M,a,q) (Abramowiczet al. 2003, Töröket al. 2008b). For
completeness, we give the explicit expressions for the frequencies in the Appendix.

Third, using the Hartle–Thorne orbital and epicyclic frequencies, we repeat the
least-square (χ2-test) fitting procedure for the same sample of the observational
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data in the 4U 1636–53 atoll source as those considered in ourprevious paper
(Stuchlíket al.2014). For the self-consistency test, we study only the two selected
variants of the RS model, RP1+RP and RP1+TP1, along the sequences of the neu-
tron star parametersM, a, q related to the allowed EoS and the rotational frequency
of the neutron star.6

The results of the fitting procedure are given in Fig. 4 for theRP1+RP variant of
the RS model and the Skyrme SV EoS. Along with the fitting basedon the Hartle–
Thorne geometry, we repeat for comparison also the results obtained under the Kerr
approximation of the neutron star external spacetime. The fitting procedure implies
the best fitχ2 = 101. In comparison to the best fit based on the Kerr approximation
(χ2 = 55, M ≈ 2.20 M⊙ , a≈ 0.272), the mass parameter is shifted to lower value
of M ≈ 2.11 M⊙ , and higher value of spina≈ 0.286. Moreover, at the values of
mass and spin predicted by the Kerr approximation whenχ2 = 55, Stuchlíket al.
2014), the Hartle–Thorne geometry impliesχ2 > 1000. Such a large discrepancy is
caused by relatively large value of the parameterq/a2 ≈ 3 when large errors of the
Kerr approximation are expected. The resulting value of theHartle–Thorne best fit,
χ2 = 101, is too high in comparison with the Kerr approximation value, χ2 = 55,
and we can conclude that the RP1+RP variant of the RS model is not satisfying the
self-consistency test.
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Fig. 4. Results of the fitting procedure for the RP1+RP variant of the RS model and the Skyrme SV
EoS. χ2 dependency onM (left), a (middle), and q/a2 (right). The gray curves correspond to the
Kerr approximation. Dashed lines correspond to values ofM anda from Table 3.

For the RP1+TP1 variant of the RS model and the Gandolfi EoS, the results
of the fitting procedure are presented in Fig. 5. We again givefor comparison
the results of the best fit obtained for the Kerr geometry approximation (χ2 = 61,
M ≈ 2.12 M⊙ , a ≈ 0.205). The best fit based on the Hartle–Thorne geometry
gives for the Gandolfi EoSχ2 = 64, a slight decrease of the mass parameter to
M = 2.10 M⊙ and a very slight increase of the spin parameter toa= 0.208. There-
fore, we can conclude that the RP1+TP1 model with the GandolfiEoS satisfies the
self-consistency test, as both precision of the fit and the estimate of the neutron star

6The fitting of the data can be done for the Hartle–Thorne geometry by considering the neutron
star parametersM, a, q as free parameters. However, such a fitting is extremely timeconsuming.
We use the fitting tied to the EoS and the rotation frequency ofthe neutron star, along the curve
characterized by the functionsa(M) , q(M) in the space of spacetime parameters. This is much
faster procedure, being quite relevant for our self-consistency test.
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parameters are in very good agreement with the predictions of the Kerr approxi-
mation used in the fitting procedure. The precision of the mass estimate is on the
level of one percent. The best fit parameterq/a2 = 1.77 is low enough to enable
the high coincidence of predictions of the Hartle–Thorne geometry and the Kerr
approximation.
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Fig. 5. Results of the fitting procedure for the RP1+TP1 variant of the RS model and the Gandolfi
EoS. χ2 dependency onM (left), a (middle) and q/a2 (right). The gray curves correspond to the
Kerr approximation. Dashed lines correspond to values ofM anda from Table 3.

For the RP1+TP1 variant of the RS model and the Skyrme Gs EoS, the results
of the fitting procedure are presented in Fig. 6. We again givefor comparison
the results of the best fit obtained for the Kerr geometry approximation (χ2 = 61,
M ≈ 2.12 M⊙ , a≈ 0.201). However, for this EoS the maximal allowed mass (M ≈
2.11 M⊙ ) is slightly lower than the Kerr approximation estimate. The best fit based
on the Hartle–Thorne geometry gives for the Skyrme Gs EoSχ2 = 64, and a slight
decrease of the mass parameter toM = 2.10 M⊙ , still very close to the maximal
allowed mass for this EOS, and a slight increase of the spin parameter toa= 0.211.
Therefore, we can conclude that the RP1+TP1 model with the Skyrme Gs EoS
satisfies the self-consistency test, as both precision of the fit and the estimate of the
neutron star parameters are in very good agreement with the predictions of the Kerr
approximation. The precision of the mass estimate is on the level of one percent
again. At the best fit, the parameterq/a2 = 1.83 is still low enough to enable
the high coincidence of predictions of the Hartle–Thorne geometry and the Kerr
approximation. However, the predicted mass of the neutron star is very close to the
maximum related to the Skyrme Gs EoS, bringing some doubts onthe applicability
of this EoS for the source 4U 1636–53. If the Skyrme Gs EoS is the proper one,
than we could expect some strong instability of this source in near future.
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142 Collection of the papers



188 A. A.

The results of theχ2-test realized for the external Hartle–Thorne geometry
with parameters governed by the acceptable EoS are summarized in Table 4. These
results give the self-consistency test of the results obtained due to the assumption
of Kerr approximation of the neutron star external spacetime. We can see that
only the RP1+TP1 variant of the RS model can be considered as surviving the
self-consistency test. Moreover, the Gandolfi EoS can be considered as the most
plausible one in explaining the fitting of observational data related to the twin HF
QPOs observed in the 4U 1636–53 source. Notice that the best fits implied by the
Hartle–Thorne geometry give in all considered casesχ2 value that is higher (worse
fit) than in the case of the fits based on the Kerr approximation. Of course, we could
obtain better fits by the Hartle–Thorne geometry for other values of the neutron star
parameters. But in such a case, the fits have to be related to the parametersM, a, q
considered as free parameters, while in our case the spacetime parameters were
confined by the chosen EoS and the observed rotation frequency of the source.
Therefore, we cannot exclude that in future an EoS will be discovered that will
enable to obtain better fit to the observational data than those presented in our
paper. However, we can note that all EoS considered in our paper give fits worse
than those implied by the Gandolfi EoS.

T a b l e 4

Results of theχ2 -test realized for the external Hartle–Thorne geometry with
parameters governed by the acceptable EoS

EoS Models M [M⊙] a q/a2 χ2

Gandolfi RP1+TP1 2.10 0.208 1.77 64
Gs RP1+TP1 2.10 0.211 1.83 64
SV RP1+RP 2.11 0.286 2.99 101

7. Discussion

The atoll source 4U 1636–53 seems to be one of the best test beds for both the
models of strong gravity phenomena and the microphysics determining equations
of state governing the internal structure and exterior of neutron stars. This is due
to simultaneous availability of relatively good observational data of the HF QPOs
occurring in the innermost parts of the accretion disk wherethe extremely strong
gravity is relevant, enabling thus to put precise restrictions on the neutron star ex-
ternal spacetime parameters in the framework of the RS model, and the knowledge
of the rotational frequency of the neutron star that enablesa precise modeling of
the internal and external structure of rotating neutron stars in the framework of the
Hartle–Thorne theory, for the whole variety of the equations of state. Strong re-
strictions on the acceptable versions of the RS model can be obtained, because the
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precise knowledge of the rotational frequency of the neutron star implies a narrow
evolution line for the Hartle–Thorne models in theM−a plane that has to be ad-
justed to relatively precisely determined points in theM−a plane predicted by the
acceptable variants of the RS model of the observed HF QPOs.

The RS model can be well tested for the atoll source 4U 1636–53since this
source demonstrates two resonant radii in the observational data. For all relevant
pairs of the oscillatory frequency relations of the RS model, the range of allowed
values of the mass and dimensionless spin of the neutron starat 4U 1636–53 has
been given in Stuchlíket al.(2012). The most promising frequency pairs predicting
the range of the 4U 1636–53 neutron star mass and spin in accord with neutron star
structure theory were tested by fitting the frequency relation pairs to the observa-
tional data on the HF QPOs separated into two parts related tothe pair of frequency
relations. Only the frequency relations containing geodesic orbital and epicyclic
frequencies, or some combinations of these frequencies, were considered (Stuchlík
et al.2014). Nevertheless, it should be noted that the cause of theswitch of the pairs
of the oscillatory modes is not necessarily tied to the resonant phenomena related
to the oscillations governed by the frequencies of the geodesic motion. The switch
can be related,e.g., to the influence of the magnetic field of the neutron star and
after the switch the Alfvén wave model can be relevant (Zhanget al.2006). How-
ever, limiting the study to the resonant phenomena and frequencies of the geodesic
origin, the number of free parameters of the model is restricted to the massM and
dimensionless spina of the neutron star, as we are able to demonstrate that the
predicted mass of the neutron star is large enough to guarantee with high precision
independence of the geodesic frequencies on the quadrupolemoment of the neu-
tron star and applicability of the Kerr approximation in describing the neutron star
external geometry (Urbanecet al.2013). Inclusion of the non-geodesic oscillation
modes and non-resonant causes of the switch is postponed to future studies and
could be relevant for some other sources containing neutronstars.

The fitting procedure performed in the framework of the RS model is shown to
be more precise by almost one order in comparison to the standard fitting based on
the individual frequency relations that were used in pairs in the RS model (Stuchlík
et al. 2014). For example, the fitting by the standard RP model predicts the best
fit along the mass–spin relationM(a) = M0

[
1+0.75(a+a2)

]
with rather poor

maximal precision of theχ2 test given byχ2 ≈ 350 andχ2/dof≈ 16. The other
frequency relations give comparable poor precision (Töröket al. 2012). Similar
results with poor precision were obtained also for models with frequency relations
of non-geodesic origin (Linet al.2011). On the other hand, the best fit obtained for
the RS model with frequency relation pair RP1+RP givesχ2 ≈ 55 andχ2/dof≈ 2.6
that is quite acceptable due to the character of the data distribution (Töröket al.
2012). The RP1+TP1 version of the RS model predicts the second best fit with
precision that is given byχ2 ≈ 61 andχ2/dof≈ 2.9.

Testing the RS model using the Hartle–Thorne theory with fixed rotation fre-
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quency and a variety of equations of state brings another efficient selection of the
variants of the RS model. The results are illustrated in Figs. 1 and 2 and clearly
demonstrate that only the two variants of the RS model givingthe best results of
the data fitting are acceptable by the Hartle–Thorne models of the neutron star
structure, if the rotation frequency isfrot ≈ 580 Hz. The RP1+RP version of the
RS model predicts mean values of massM ≈ 2.20 M⊙ and spina ≈ 0.27 and
these are the data that can be met precisely by the Hartle–Thorne models – namely
for the Skyrme equation of state SV. The RP1+TP1 version of the RS model pre-
dicts the mean values of massM ≈ 2.12 M⊙ and spina ≈ 0.20. This mass and
spin can be explained by the Hartle–Thorne model with the Gandolfi equation of
state. It is interesting that the prediction of the Hartle–Thorne model based on the
Skyrme equation of state Gs enters the allowed range of the mass and spin param-
eters given by the RP1+TP1 version of the RS model, although it does not reach
the mean value of the mass parameter, as demonstrated in Fig.2. If this equation
of state is the real one, the neutron star in the source 4U 1636–53 has to be in a
state very close to instability leading to some form of collapse and dramatic ob-
servational phenomena. Mass and spin of the neutron star predicted by the other
versions of the RS model acceptable due to the data fitting arecompletely out of
the range of theM−a dependencies predicted by the Hartle–Thorne model for the
whole variety of available equations of state.

In the special situations related to accreting neutron stars with near-maximum
masses, the Kerr metric can be well applied in calculating the orbital and epicyclic
geodesic frequencies, as has been done in the present paper.It should be stressed
that the neutron star mass and spin parameters predicted by the two relevant find-
ings of frequency pairs are in agreement with the assumptionof near-maximum
masses of the neutron stars – see Fig. 2. For each acceptable equation of state and
the observed rotation frequency of the neutron star, the Hartle–Thorne model has
been constructed, giving thus not only massM and spina, but also the dimen-
sionless quadrupole momentq and other characteristics as the equatorial radius
and the compactness. The detailed results of the Hartle–Thorne model obtained
for the three equations of state that can be in the play are shown in Table 3. The
results clearly demonstrate that in all three cases we obtain a very compact neutron
star, especially for the Gandolfi and Skyrme Gs equations of state, related to the
second best fit with mass parameterM ≈ 2.12 M⊙ and spina = 0.2, having ra-
dius R≈ 3.5M . The spin exactly predicted by the Hartle–Thorne model is slightly
overcoming the mean value of the spin of the data fitting of theRS model, but it be-
longs to the allowed range. The parameterq/a2 ≈ 1.7 corresponds to the external
Hartle–Thorne spacetime that is very close to the Kerr spacetime.

The self-consistency test of the RP1+TP1 variant of the RS model using the
Hartle–Thorne geometry, related to the Gandolfi EoS, confirms this choice, since
the results of theχ2-test are very close to those obtained due to the test in the Kerr
geometry approximation – both for the value ofχ2 at the best fit, and the close
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values of the mass and spin spacetime parameters. Similar results are obtained
by the self-consistency test for the Hartle–Thorne model related to the Skyrme Gs
EoS. However, the test confirms also the conclusion that the estimated mass has
to be very close to the maximum allowed by the EoS, lowering thus the potential
relevance of this EoS for the 4U 1636–53 neutron star.

For the RP1+RP variant of the RS model, the Hartle–Thorne model using the
Skyrme SV EoS, related to the neutron star with massM ≈ 2.20 M⊙ , the spin is
also predicted with the high precisiona= 0.272, but the neutron star is not so ex-
tremely compact, having radiusR≈ 4.1M . The parameterq/a2 ≈ 2.6 is too high
to approve the application of the Kerr geometry in description of the Hartle–Thorne
external spacetime. In fact, the self-consistency test using the Hartle–Thorne ge-
ometry predicts the best fit withχ2 being too high (twice the estimate due to the
fitting procedure using the Kerr approximation) to imply relevance of this variant
for the chosen EoS. For this reason the RP1+RP variant of the RS model can be
considered to be excluded by the self-consistency test.

8. Conclusions

We can conclude that there is a strong synergy effect of our approach. As
expected, the equations of state applied in the Hartle–Thorne model of neutron
stars fully exclude a lot of variants of the RS model that could be acceptable due
to the fitting procedure to the HF QPO data observed in the 4U 1636–53 source.
Moreover, the results of the RS model allow the rotation frequency of the 4U 1636–
53 neutron starfrot = 580 Hz, but fully exclude the possibility offrot = 290 Hz.

The restrictions work effectively in the opposite direction too – the results of the
RS model put significant restrictions on the relevance of theequations of state. The
crucial point is that the self-consistency test by fitting the observational data by the
RS model with the orbital and epicyclic frequencies in the Hartle–Thorne geometry
related to the acceptable EoS excludes one of the variants ofthe RS model predicted
by the fitting under the Kerr approximation of the neutron star external geometry,
and also the corresponding EoS. In fact, we have shown that the RP1+RP variant of
the RS model along with the Skyrme SV EoS connected to this variant are excluded
by the self-consistency test giving high value ofχ2 at the best fit. It is interesting
that this happens for the variant of the RS model giving the best fit to the data of
twin HF QPOs when the Kerr approximation of the oscillatory frequencies has been
used.

On the other hand, the RP1+TP1 variant of the RS model relatedto a very stiff
Gandolfi EoS goes successfully through the self-consistency test by the Hartle–
Thorne geometry. In this case, the resulting best fit givesχ2 = 64 that is well
comparable to the result obtained for the Kerr approximation (χ2 = 61). The re-
sulting neutron star parameters (M ≈ 2.10 M⊙ , a≈ 0.208, andq/a2 ≈ 1.77) are
also very close to those obtained in the Kerr approximation,demonstrating errors
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of one percent. Moreover, the Skyrme Gs EoS used in the self-consistency test by
the Hartle–Thorne geometry gives also acceptable results,implying a possibility
of the 4U 1636–53 neutron star being near the marginally stable state with mass
M ≈ 2.11 M⊙ . Of course, the vicinity of an instability of the neutron star puts
some doubts on the applicability of the Skyrme Gs EoS.

We can conclude that in the framework of the Hartle–Thorne theory the EoS
imply strong restriction on the RS model of the twin HF QPOs observed in the
atoll source 4U 1636–53. In fact only the RP1+TP1 variant of the RS model satis-
fies the self-consistency test. Moreover, it seems that there is only one EoS, namely
the Gandolfi EoS that can be considered as a fully realistic choice in the framework
of the modeling the twin HF QPOs. The self-consistency test also demonstrates
that the Kerr approximation of the neutron star external geometry gives very pre-
cise estimates for very compact neutron stars having sufficiently low values of the
parameterq/a2 < 2.

It was shown that observations of the twin HF QPOs provide tests on equation
of state that put limits on the gravitational mass, and the spin that is linearly related
to the moment of inertia of the neutron star. This could provide another test of the
equations of state that allow for existence of neutron starswith M > 2.0 M⊙ .

For the equations of state acceptable by the RS model we can determine also the
quadrupole moment and the shape of the neutron star surface governed by the equa-
torial and polar radii. These quantities have to enter otherstrong gravity tests of the
4U 1636–53 neutron star spacetime parameters predicted by the twin HF QPOs,
e.g., the profiled spectral lines generated at the neutron star surface or at its accre-
tion disk. We believe that such tests could confirm or excludeone of the two EoS
implied by the acceptable variant of the RS model.

Of course, it will be very important to test the RS model of thetwin HF QPOs
and all its consequences for some other neutron star system.We have to check, if
the same variant of the RS model, and the same EoS in the Hartle–Thorne theory of
the neutron stars could be relevant. However, no source similar to the 4U 1636–53
neutron star system has been observed. Such sources have to demonstrate suffi-
ciently extended range of the twin HF QPOs and an indication of two clusters of
the observational data that could be related to different models of twin HF QPOs
that could be switched at a resonant point. Simultaneously,we have to know the
rotation frequency of the neutron star.
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Horák, J., Abramowicz, M.A., Kluźniak, W., Rebusco, P., and Török, G. 2009,A&A, 499, 535.
Kato, S. 2008,PASJ, 60, 111.
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Urbanec, M., Török, G., Šrámková, E.,Čech, P., Stuchlík, Z., and Bakala, P. 2010b,A&A, 522, A72.
Urbanec, M., Miller, J.C., and Stuchlík, Z. 2013,MNRAS, 433, 1903.
van der Klis, M. 2006, in: “Compact Stellar X-Ray Sources”, Ed. W.H.G. Lewin and M. van der Klis

(Cambridge: Cambridge University Press), p. 39–112.
Wang, D.H., Chen, L., Zhang, C.M., Lei, Y.J., and Qu, J.L. 2013, MNRAS, 435, 3494.
Witten, E. 1984,Phys. Rev. D,, 30, 272.
Zhang, C.M., Yin, H.X., Zhao, Y.H., Zhang, F., and Song, L.M.2006,MNRAS, 366, 1373.

6.4. Equations of State in the Hartle-Thorne Model of Neutron Stars 149



Vol. 65 195

Appendix. Orbital and Epicyclic Frequencies in Hartle–Thorne Geometry

Circular and epicyclic geodesic motion in the Hartle–Thorne geometry has been
studied in Abramowiczet al. (2003), Töröket al. (2008b, 2015). Here we only
present the expressions for the orbital (Keplerian) frequency and the radial and
vertical epicyclic frequencies as given in Töröket al. (2008b). Alternative, but
equivalent, expressions can be found in Boshkayevet al. (2014).

The Keplerian frequency is determined by the relations

νK(r;M,a,q) =
c3

2πGM
1

r3/2

[
1− a

r3/2
+a2E1(r)+qE2(r)

]
(21)

where
E1(r) = [48−80r +4r2−18r3+40r4+10r5+15r6−15r7]

(16(r −2)r4)−1+
15(r3−2)

32
ln

(
r

r −2

)
,

E2(r) =
5(6−8r −2r2−3r3+3r4)

16(r −2)r
− 15(r3−2)

32
ln

(
r

r −2

)
. (22)

The radial epicyclic frequencyνr and the vertical epicyclic frequencyνθ are given
by the relations

ν2
r (r;M,a,q) =

(
c3

2πGM

)2
(r −6)

r4 [1+aF1(r)−a2F2(r)−qF3(r)], (23)

ν2
θ(r;M,a,q) =

(
c3

2πGM

)2
1
r3 [1−aG1(r)+a2G2(r)+qG3(r)] (24)

where

F1(r) =
6(r +2)

r3/2(r −6)
,

F2(r) = [8r4(r −2)(r −6)]−1[384−720r −112r2−76r3

−138r4−130r5+635r6−375r7+60r8]+A(r),

F3(r) =
5(48+30r +26r2−127r3+75r4−12r5)

8r(r −2)(r −6)
−A(r),

A(r) =
15r(r −2)(2+13r −4r2)
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ln
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ABSTRACT

Twin-peak quasi-periodic oscillations (QPOs) are observed in the X-ray power-density spectra of several accreting
low-mass neutron star (NS) binaries. In our previous work we have considered several QPO models. We have
identified and explored mass–angular-momentum relations implied by individual QPO models for the atoll source
4U1636-53. In this paper we extend our study and confront QPO models with various NS equations of state
(EoS). We start with simplified calculations assuming Kerr background geometry and then present results of
detailed calculations considering the influence of NS quadrupole moment (related to rotationally induced NS
oblateness) assuming Hartle–Thorne spacetimes. We show that the application of concrete EoS together with a
particular QPO model yields a specific mass–angular-momentum relation. However, we demonstrate that the
degeneracy in mass and angular momentum can be removed when the NS spin frequency inferred from the X-ray
burst observations is considered. We inspect a large set of EoS and discuss their compatibility with the considered
QPO models. We conclude that when the NS spin frequency in 4U1636-53 is close to 580 Hz, we can exclude 51
of the 90 considered combinations of EoS and QPO models. We also discuss additional restrictions that may
exclude even more combinations. Namely, 13 EOS are compatible with the observed twin-peak QPOs and the
relativistic precession model. However, when considering the low-frequency QPOs and Lense–Thirring
precession, only 5 EOS are compatible with the model.

Key words: accretion, accretion disks – equation of state – stars: neutron – X-rays: binaries

1. INTRODUCTION

Accreting neutron stars (NS) are believed to be the compact
component in more than 20 low-mass X-ray binaries (LMXBs).
In these systems, the mass is transferred from the companion
by overflowing the Roche lobe and forming an accretion disk
that surrounds the NS. The disk contributes significantly to the
high X-ray luminosity of these objects, while most of the
radiation comes from its inner parts and the disk–NS boundary
layer. According to their X-ray spectral and timing properties,
the NS LMXBs have been further classified into Z and atoll
sources, whose names have been inspired by the shapes of the
tracks they trace in the color–color diagram (e.g., van der
Klis 2005). While the Z sources are generally more stable and
brighter, the atoll sources are weaker and show significant
changes in the X-ray luminosity. Both classes exhibit a
variability over a wide range of frequencies. Except for
irregular changes, their power spectra also contain relatively
coherent features known as quasi-periodic oscillations (QPOs).

The so-called low-frequency QPOs have frequencies in the
range of 1–100 Hz. In the case of Z sources they have been
further classified into horizontal, flaring, and normal branch
oscillations (HBO, FBO, and NBO, respectively) depending on
the position of the source in the color–color diagram.
Oscillations of properties similar to HBOs have also been
observed in several atoll sources (see van der Klis 2006, p. 39,
for a review). Much attention among theoreticians is attracted
to the kilohertz QPOs (100–1000 Hz), however, because their

high frequencies are comparable to the orbital timescale in the
vicinity of a NS. It is believed that this coincidence represents a
strong indication that the corresponding signal originates in the
innermost parts of the accretion disks or close to the surface of
the NS itself. This belief has also been supported by means of
the Fourier-resolved spectroscopy (e.g., Gilfanov et al. 2000).
The kHz QPOs have similar properties in both Z and atoll

sources. They are frequently observed in pairs and are often
called twin-peak QPOs. Their “upper” and “lower” QPO
frequencies (nU and nL, respectively) exhibit a strong and
remarkably stable positive correlation and clustering around the
rational ratios. These ratios are emphasized either by the
intrinsic source clustering, or by a weakness of the two QPOs
outside the limited frequency range (suggesting a possible
resonant energy exchange between two physical oscillators,
Abramowicz et al. 2003a; Belloni et al. 2005, 2007; Barret &
Boutelier 2008; Török et al. 2008a, 2008b, 2008c; Horák
et al. 2009; Boutelier et al. 2010). Other properties of each
oscillation (e.g., the rms-amplitude and the quality factor) seem
to mostly depend on its frequency, and the way in which they
vary is different for the upper and lower oscillation. These
differences often help to identify the type of kHz QPO in cases
when only one peak is present in the power spectra (Barret
et al. 2005, 2006; Méndez 2006; Török 2009).
Many models have been proposed to explain the rich

phenomenology of twin-peak QPOs (Alpar & Shaham 1985;
Lamb et al. 1985; Miller et al. 1998; Psaltis et al. 1999;
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Wagoner 1999; Abramowicz & Kluźniak 2001; Kato 2001, 2007,
2008; Kluźniak & Abramowicz 2001; Wagoner et al. 2001;
Titarchuk & Wood 2002; Abramowicz et al. 2003b, 2003c;
Rezzolla et al. 2003; Kluźniak et al. 2004; Bursa 2005; Pétri
2005; Zhang 2005; Török et al. 2007, 2016; Čadež et al. 2008;
Stuchlík et al. 2008; Germanà et al. 2009; Kostić et al. 2009;
Mukhopadhyay 2009; Stuchlík et al. 2013, 2014, 2015; Wang
et al. 2015, and several others). While any acceptable model
should address both the excitation mechanism and subsequent
modulation of the resulting X-ray signal as well as their overall
observational properties, most of the theoretical effort has so far
been devoted to the observed frequencies. Clearly, their
correlations serve as a first test of the model viability.

1.1. Aims and Scope of this Paper

Comparison between the observed and the expected
frequencies can reveal the mass and angular momentum of
the NS. These can be confronted with models of rotating NS
based on a modern equation of state (EoS, e.g., Urbanec
et al. 2010b). In Török et al. (2012) we have identified and
explored mass–angular-momentum relations implied in Kerr
spacetimes by individual QPO models. We have also discussed
that the degeneracy in mass and angular momentum can be
removed when the NS spin frequency is known.

Here we extend our study and confront QPO models with a
large set of NS EoS while focusing on the influence of NS
quadrupole moment that is related to its rotationally induced
oblateness. The paper is arranged as follows. In Section 2 we
very briefly recall individual QPO models that we consider
together with previously obtained results. We present here the
completed simplified calculations that assume Kerr background
geometry and the atoll source 4U 1636-53. These follow
previous comparison between predictions of the relativistic
precession (RP) model and 5 EoS. The consideration is
extended to other models and a large set of 18 EoS. Sections 3.1
and 4 bring detailed consequent calculations of RP model
predictions considering the influence of the NS quadrupole
moment within Hartle–Thorne spacetimes. We show here that
the application of concrete Sly 4 EoS within the model in
Hartle–Thorne spacetime brings a specific mass-spin relation.
This relation is confronted with the NS spin frequency inferred
from the X-ray burst observations. In Section 5 we present
analogical results for the whole set of 5 QPO models and 18
EoS and outline their implications. We also discuss here the
implications of the consideration of low-frequency QPOs.

2. TWIN-PEAK QPO MODELS APPROXIMATED IN
KERR SPACETIMES

Within the framework of many QPO models, the observable
frequencies can be expressed directly in terms of epicyclic
frequencies. Formulae for the geodesic Keplerian and radial
and vertical epicyclic frequencies in Kerr spacetimes were first
derived by Aliev & Galtsov (1981). In a commonly used form
(e.g., Török & Stuchlík 2005) they read


n nW =

+
= GW = DWq

j x
, , , 1K K K3 2 r ( )

where

G =
- + + - +

D = +
-

j j x x x

x

j j x

x

3 8 6
,

1
3 4

, 2

2

2

2

( )

( ) ( )

ºx r M , and the “relativistic factor” reads pº c GM23 ( ).
We note that Kerr geometry represents an applicable approx-
imation of NS spacetimes when the mass of the compact object is
high (Török et al. 2010; Urbanec et al. 2013).
The above formulae are valid for Kerr spacetimes and

describe (epicyclic) slightly perturbed circular geodesic motion
well. This description of epicyclic motion of test particles that
is relevant to standard thin accretion disks may also well
approximate epicyclic motion in fluid accretion flow provided
that the pressure effects in the fluid are negligible and linear
quasi-incompressible modes are considered. Formulae for
geodesic epicyclic oscillations are often assumed within several
QPO models based on accretion disk hot-spot as well as global
fluid motion (e.g., Stella & Vietri 1999, 2001; Abramowicz &
Kluźniak 2001; Kluźniak & Abramowicz 2002). Here we
investigate a subset of models that have previously been
considered in the study of Török et al. (2012).

2.1. Individual Models of QPOs and their Predictions

The RP model explains the kHz QPOs as a direct
manifestation of modes of relativistic epicyclic motion of
blobs at various radii r in the inner parts of the accretion disk
(Stella & Vietri 1999). For the RP model, one can easily solve
relations defining the upper and lower QPO frequencies in
terms of the orbital frequencies and arrive at an explicit formula
that relates the upper and lower QPO frequencies in units of

Table 1
Models Examined in this Work

Model Relations nL–nU Relation

RP n n n= -L K r, ⎧⎨⎩
⎡
⎣⎢

⎤
⎦⎥

⎫⎬⎭  
n n= - + - -n

n
n

n
n

n- - -
j1 1 6 3L U

j

j j j

8 2 3
2

4 3 1 2
U

U

U

U

U

U( ) ( )
n n=U K

TD n n=L K , ⎧⎨⎩
⎡
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⎤
⎦⎥
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L( ) ( )
n n n= +U K r

WD n n n= -2L K r( ), n n n= -2U K r

RP1 n n n= -L K r, n n= qU

RP2 n n n= -L K r, n n n= - q2U K

2

The Astrophysical Journal, 833:273 (11pp), 2016 December 20 Török et al.

154 Collection of the papers



Hertz (Török et al. 2010). We show this relation in Table 1.
The concept of the tidal disruption (TD) model is similar to the
RP model, but the QPOs are atributed to a disruption of large
accreting inhomogenities (Germanà et al. 2009). The explicit
relation between the two observed QPO frequencies can be
evaluated in a way similar to the case of the RP model (Török
et al. 2012), and we also include this relation in Table 1.

While the former two models assume motion of a hot-spot
propagating within the accretion disk, the warp disk (WD)
model assumes non-axisymmetric oscillation modes in a thick
disk (Kato 2001). The two other considered models, RP1 and
RP2, also deal with non-axisymmetric disk-oscillation modes.
The frequencies of these modes coincide with the frequencies
predicted by the RP model in the limit of j= 0 (Bursa 2005;
Török et al. 2010). Although the relevant frequencies coincide
in the case of non-rotating NS, they correspond to a different
physical situation (see Figure 1 for an illustration). We include
the expressions for lower and upper QPO frequency for all the
three disk-oscillation models in Table 1.

Török et al. (2010, 2012) assumed a high-mass (Kerr)
approximation of NS spacetimes and relations from Table 1.
We have demonstrated that for each twin-peak QPO model and

a given source, the model consideration results in a specific
relation between the NS mass M and angular momentum j
rather than in their single preferred combination. We payed
special attention to the atoll source 4U 1636-53 and evaluated
mass–angular-momentum relations for all discussed QPO
models.6

2.2. Twin-Peak QPO Models versus NS EoS

Török et al. (2012) compared a c2 map describing the
quality of the RP model fit of the 4U 1636-53 data to the M− j
relations implied by five specific NS EoS. These M− j
relations were calculated assuming that the NS spin frequency
nS is 580 Hz (Strohmayer & Markwardt 2002; Galloway et al.
2008; Watts 2012). In these calculations we used the approach

Figure 1. Frequencies of orbital motion and illustration of models of QPOs in the atoll source 4U 1636-53. (a) Behavior of characteristic orbital frequencies in Kerr
spacetimes. The blue area denotes a radial region associated with the RP model, i.e., the region where orbital and periastron precession frequencies can be identified
with the frequencies observed in the atoll source 4U 1636-53. The red area denotes the same, but for the RP2 model frequencies. The gray area corresponds to the
region below the marginally stable circular orbit, <r rms. (b) Example of a free test particle trajectory and its projection onto the equatorial plane. The figure
corresponds to the situation drawn in panel (a) and the RP model ( =r M5 ). The red circle indicates an unperturbed circular trajectory. (c) Equipotencial surfaces
determining the shape of the torus located at =r M5 drawn for different values of torus thickness β. The slender torus limit (b = 0) is denoted by the black cross. In
this limit, and when the RP2 model is assumed, the torus oscillates with frequencies n n-r rK r( ) ( ) and n n- qr r2 K ( ) ( ). In the limit of j=0, these frequencies
coincide with the RP model frequencies n n-r rK r( ) ( ) and n rK ( ). Although the two models predict the same frequencies in the limit of non-rotating NS, the
associated physical mechanisms are not the same.

6 Lin et al. (2011) have performed a similar analysis assuming a different set
of twin-peak QPO frequency data points for the atoll source 4U 1636-53. The
data points in their study have been obtained via common processing of a large
amount of data, while the data points used by Török et al. (2012) correspond to
individual continuous observations of the source. It was shown in Török et al.
(2012) that the results of the two studies are consistent (see also the NS
parameteres resulting within the two studies denoted in Figure 2 and in Török
et al. 2016).

3
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of Hartle (1967), Hartle & Thorne (1968), Chandrasekhar &
Miller (1974), Miller (1977), and Urbanec et al. (2010a).

In the top panel of Figure 2 we show a comparison between
predictions of the RP model and 4 EoS carried out in Török
et al. (2012). We note that the choice of concrete EoS used
within that paper was motivated by low values of a scaled
quadrupole moment ºq q j2˜ of the assumed NS configura-
tions.7 Although QPO model predictions are drawn for
simplified calculations assuming Kerr background geometry,
in following we do not restrict ourselves to high-mass
(compactness) NS. We thus add 14 more EoS, which are
indicated within the figure. The full set of 18 EoS considered
hereafter is listed in Table 2. In the other panels of Figure 2 we
make the same comparison, but for the other four considered
QPO models.

Török et al. (2012) directly compared (a few) EoS and the
RP model. Inspecting our overall extended Figure 2, we can
expect that QPO models place strong restrictions on NS
parameters and EoS, or vice versa. For instance, a direct
confrontation of EoS and TD model predictions strongly
suggests that the model (favored within the study of Lin

et al. 2011) entirely fails to meet the requirements given by the
consideration of NS EoS. Moreover, by comparing overlaps
between the RP model relation and curves denoting the
requirements of individual EoS, other interesting information
can be obtained: there is a difference between overlaps
considered in Török et al. (2012), which are denoted here by
the red spot in Figure 2, and overlaps given by the newly
considered EoS. Clearly, the high quadrupole moment of NS
configurations related to the latter set of EoS increases the
required NS angular momentum. For instance, there is
j 0.19 for Sly 4 versus j 0.28 for SV EoS. It is also

apparent that this effect can be important for the consideration
of Lense–Thirring precession and low-frequency QPOs within
the framework of the RP model.
Motivated by these findings, below we explore restrictions

on QPO models in detail and perform consistent calculations in
Hartle–Thorne spacetimes.

3. CALCULATIONS IN HARTLE–THORNE SPACETIMES

So far, we have considered only a Kerr approximation of the
rotating NS spacetime assuming that the star is very compact.
In this case the NS quadrupole moment q related to its
rotationally induced oblateness reaches low values, and we
have »q 1˜ . In a more general case of >q 1˜ , one should

Figure 2. c2 maps (20d.o.f.) calculated from data of the atoll source 4U1636-53 and individual QPO models within Kerr spacetimes vs. mass–angular-momentum
relations predicted by NS EoS. For the calculations we consider 14 more EOS in addition to 4 EoS (SLy 4, APR, AU-WFF1, and UU-WFF2) assumed in Török et al.
(2012). The full set of 18 EoS is listed in Table 2. In each panel the green line indicates the best c2 for a fixed M, while the dashed green line denotes its quadratic
approximation. The white lines indicate the corresponding 1σ and 2σ confidence levels. The NS EoS are assumed for the rotational frequency of 580 Hz inferred from
the X-ray burst observations. The green crosses denote the mass and angular momentum combinations reported for 4U 1636-53 and individual QPO models by Lin
et al. (2011). The red spot roughly indicates the combination of mass and spin inferred from the common consideration of the RP model, NS spin frequency of 580 Hz,
and 4 EoS as discussed by Török et al. (2012). The horizontal dashed red line together with the horizontal shaded bar indicate additional restrictions on the RP model
that follow from consideration of Lense–Thirring precession, as discussed in Török et al. (2012).

7 Török et al. (2012) also assumed one more EOS (WS, Wiringa et al. 1988;
Stergioulas & Friedman 1995). We do not consider this EOS here since it does
not fulfill the requirements of the current observational tests.
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assume NS spacetime approximated by the Hartle–Thorne
geometry (Hartle 1967; Hartle & Thorne 1968).8

Based on the Hartle–Thorne approximation, the Keplerian
orbital frequency can be expressed as (Abramowicz
et al. 2003a)

⎡
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3.1. Results for the RP Model

Assuming the above formulae, we have calculated 3D-c2

maps for the RP model. In the left panel of Figure 3 we show
the behavior of the best c2 as a function of M and j for several
color-coded values of q̃. For each value of q̃ there is a preferred
M−j relation. We find that, although such a relation has a
global minimum, the gradient of c2 along the relation is always
much lower than the gradient in the perpendicular direction. In
other words, c2 maps for a fixed q̃ are of the same type as the
maps calculated in the Kerr spacetime. It then follows that there
is a global - -M j q̃ degeneracy in the sense discussed by
Török et al. (2012); see their Figure 3.
As emphasized by Urbanec et al. (2010b), Török et al.

(2010), Kluźniak & Rosińska (2013), Török et al. (2014),
Rosińska et al. (2014), and Boshkayev et al. (2015), Newtonian
effects following from the influence of the quadrupole moment
act on the orbital frequencies in a way opposite to that which is
related to relativistic effects following from the increase of the
angular momentum. The behavior of the relations shown in the
left panel of Figure 3 is determined by this interplay. Because
of this, we can see that the increased NS quadrupole moment
can compensate for the increase in estimated mass given by a
high angular momentum.

4. CONSIDERATION OF NS MODELS GIVEN BY
CONCRETE EOS

The relations for the RP model drawn in the left panel of
Figure 3 result from fitting of the 4U 1636-53 data points
considering the general Hartle–Thorne spacetime. The con-
sideration does not include strong restrictions on spacetime
properties following from NS modeling based on present EoS.
It can be shown that a concrete NS EoS covers only a 2D

Table 2
EoS Examined in this Work

R nc
EoS Mmax (km) ( -fm 3[ ] ) References

Sly 4 2.04 9.96 1.21 1
SkI5 2.18 11.3 0.97 1
SV 2.38∗ 11.9 0.80 1
SkO 1.97 10.3 1.19 1
Gs 2.08 10.8 1.07 1
SkI2 2.11 11.0 1.03 1
SGI 2.22 10.9 1.01 1
APR 2.21 10.2 1.12 2
AU 2.13 9.39 1.25 3
UU 2.19 9.81 1.16 3
UBS 2.20∗ 12.1 0.68 4
GLENDNH3 1.96 11.4 1.05 5
Gandolfi 2.20 9.82 1.16 6
QMC700 1.95 12.6 0.61 7
KDE0v1 1.96 9.72 1.29 8
NRAPR 1.93 9.85 1.29 9
PNM L80 2.02 10.4 1.16 10
J35 L80 2.05 10.5 1.14 10

Note. The individual columns indicate the maximum mass and corresponding
radius, and the central baryon number density for each EoS along with the
relevant references. The asterisks mark three EoS whose maximum mass
corresponds to the maximum density allowed by the available EoS table, and
not to a marginally stable star.
References. (1) Rikovska Stone et al. (2003), (2) Akmal et al. (1998), (3)
Wiringa et al. (1988), (4) Urbanec et al. (2010a), (5) Glendenning (1985), (6)
Gandolfi et al. (2010), (7) Rikovska Stone et al. (2007), (8) Agrawal et al.
(2005), (9) Steiner et al. (2005), (10) Newton et al. (2013).

8 The adopted approximation represents a convenient alternative to a (more
precise) numerical approach (discussed in the same context by Stella et al.
1999) or other spacetime descriptions (e.g., Manko et al. 2000; Stute &
Camenzind 2002; Pappas 2015), see also Bonazzola et al. (1993, 1998),
Stergioulas & Friedman (1995), Nozawa et al. (1998), Ansorg et al. (2003), and
Berti et al. (2005).
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surface in the 3D - -M j q̃ space since the quadrupole
moment is determined by rotationally induced NS oblateness.
Thus, when a given EoS is assumed, only the corresponding
2D surface is relevant for fitting data points by a given QPO
model. Following Urbanec et al. (2013), we illustrate such a
surface in the right panel of Figure 3 for the SLy 4EoS. The
color-coding of the plot is the same as the one in the left panel
of the same figure.

The final M−j map for the RP model and Sly 4 EoS, i.e.,
the values of M and j implied by the common consideration of
the two panels of Figure 3, is shown in the left panel of
Figure 4. The right panel of this figure then shows an
equivalent map drawn for the NS mass and spin frequency nS.

4.1. NS Mass Inferred Assuming X-Ray Burst Measurements

The left panel of Figure 4 shows that the concrete EoS, SLy
4, considered for the RP model implies a clear M−j relation.
This relation exhibits only a shallow c2 minimum. The right
panel of the same figure shows the equivalent relation between

the NS mass and the spin frequency as well as its shallow
minimum. Taking into account the spin frequency inferred
from the X-ray bursts, 580 Hz, we can find from Figure 4 that
the NS mass and angular momentum have to take values of

=  M M j2.06 0.01 , 0.2. 6( ) ( )

These values are in a good agreement with those inferred from
the simplified consideration using Kerr spacetimes (see
Figure 2). Considering the shallow c2 minima denoted in
Figure 4, it may be interesting that its frequency value almost
coincides with the measured spin frequency of 580 Hz.

5. DISCUSSION AND CONCLUSIONS

In addition to the Sly 4 EoS, we have investigated a wide set
of 17 other EoS that are based on different theoretical models.
All these EoS are listed in Table 2, where we show the
maximum NS mass allowed by each EoS as well as the
corresponding NS radius and the central number density. All
these EoS are compatible with the highest observed NS masses

Figure 4. Left: the finalM−j map implied by the RP model and the Sly 4 EoS. The light color area denotes an intersection between the 2D surface given by the Sly 4
EoS and 3D volume corresponding to the s2 confidence level given by the RP best-fit model found in the intervals of Î  M M M1 , 4[ ], Îj 0.0, 0.5[ ], and
Îq 1, 10˜ [ ]. The c2 minimum of 303/20d.o.f. at the 2D surface is denoted by the dark marker. The dark color area denotes the s2 confidence level calculated when

this local minimum is assumed as a global minimum, provided that the QPO frequency error bars are underestimated by a corresponding factor x = 3.92D . We can see
that in this particular case, there is almost no difference between the two areas. The dashed curve indicates the M−j relation obtained from the simplified
consideration of Kerr spacetimes (see Section 2). Right: the same map, but drawn for the NS spin frequency nS. The horizontal dashed red line denotes the spin
frequency measured from the X-ray bursts (i.e., n = 580S Hz). The minimum of c2 for the spin n = 580S Hz corresponds to c = 305 212 d.o.f.

Figure 3. Left: behavior of the best c2 as a function ofM and j for several values of q̃ . The dots denote global minima for each value of q̃ (see, however, the main text,
Section 3.1, for a comment on this). Right: the 2D surface in the 3D - -M j q̃ space given by the SLy 4 EoS.
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(see, e.g., Klähn et al. (2006), Steiner et al. (2010, 2015), Klähn
et al. (2007), Dutra et al. (2012), and Dutra et al. (2014) for
various tests of EoS and their applications, and Demorest et al.
(2010) and Antoniadis et al. (2013) for the highest observed NS
masses).

In Figure 5 we show several relations between the mass and
spin frequency obtained for the RP model and our large set of
EoS. These relations are similar to those implied by the Sly 4
EoS discussed above. However, we can see that in several
cases, a given EoS does not provide any match for the NS spin
of 580 Hz. This can rule out the combination of the considered
RP model and given specific EoS. The selection effect comes
from the correlation between the estimated mass and angular
momentum and the limits on maximal mass allowed by the
individual EoS.

5.1. Selecting Combinations of QPO Models and EoS

We also found an analogical selection effect for the other
four examined QPO models. The corresponding M−j maps
are shown in Figure 5. The results for all considered models are
summarized in Table 3. The table shows which of the models
and EoS are compatible, and which of them are not. Overall,
there are 39 matches from the 90 investigated cases for the NS
spin frequency of 580 Hz. We can therefore conclude that for
the NS spin frequency in 4U1636-53 to be close to 580 Hz, we
can exclude 51 of the 90 considered combinations of EoS and

QPO models. This result follows from the requirement of the
relatively high masses implied by the individual QPO models
and from the increase in these masses with the NS spin.

5.2. Implications for QPO Models

When we assume that the Hartle–Thorne geometry is
restricted to the range of angular momentum and scaled
quadrupole moment Îj q, 0, 0.4 , 1, 10{ ˜} {[ ] [ ]}, the four
investigated QPO models imply a relatively broad range of
NS mass, Î M M1.6, 3.4[ ] ( Î M M1.8, 2.5[ ] when j=0).
In Figure 6 we illustrate a corresponding comparison between
the data and some individual fits. From inspecting Figure 6, we
can see that the quality of the fits is rather poor (represented by
c ~d.o.f. 102 , see Table 3). The comparison between data and
curves drawn for the RP model indicates the possible presence
of systematic errors within the model. This also holds for the
RP1, RP2, and WD model. The trend is somewhat better only
in the case of the TD model. This has also been noted by Lin
et al. (2011). However, when we take into account require-
ments given by present EoS and the NS spin of 580 Hz, the TD
model is ruled out (see the green curve in the bottom right
panel of Figure 6). The range of NS mass that corresponds to
the considered models is then reduced to Î M M2.0, 2.2[ ] .
Remarkably, the consideration of Hartle–Thorne spacetime

does not improve the quality of the fits. For instance, the
deviation of the RP model curve from the data discussed by Lin

Figure 5. Mass-spin maps for the considered QPO models and 18 different EoS. The light color area denotes an intersection between the 2D surface given by the EoS
and 3D volume corresponding to s2 confidence level associated to the best fit for a given model and the intervals of Î  M M M1 , 4[ ], Îj 0.0, 0.5[ ], and Îq 1, 10˜ [ ].
The c2 minimum at the 2D surface is denoted by the dark marker. The dark color area denotes the s2 confidence level calculated when this local minimum is assumed
as a global one providing that the QPO frequency error bars are underestimated by a corresponding factor x2D. The horizontal dashed red lines denote spin frequency
measured from the X-ray bursts (i.e., n = 580S Hz).
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Table 3
Results for the Considered EoS and QPO Models

RP Model RP1 Model RP2 Model

x +H T =3.6, xKerr=3.1 x +H T =3.6, xKerr=3.3 x +H T =3.9, xKerr=3.5

EoS M j cmin
2 M j cmin

2 M j cmin
2

SLy 4 2.06±0.01 0.19 305 1.99±0.02 0.21 302 X X X
SkI5 2.11±0.01 0.25 323 2.02±0.01 0.27 321 2.19±0.02 0.23 327
SV 2.12±0.01 0.28 345 2.03±0.01 0.30 334 2.22±0.02 0.27 355
SkO X X X 1.98±0.01 0.20 302 X X X
Gs 2.08±0.01 0.22 309 2.01±0.02 0.24 307 X X X
SkI2 2.10±0.01 0.23 313 2.01±0.02 0.25 311 2.14±0.01 0.21 395
SGI 2.11±0.01 0.25 319 2.02±0.02 0.26 314 2.19±0.02 0.23 328
APR 2.09±0.01 0.22 309 2.00±0.02 0.23 304 2.17±0.02 0.21 320
AU 2.06±0.01 0.20 305 1.98±0.02 0.20 301 2.13±0.02 0.19 315
UU 2.08±0.01 0.21 306 1.99±0.02 0.22 302 2.16±0.02 0.20 317
UBS 2.11±0.01 0.26 325 2.02±0.01 0.27 317 2.21±0.02 0.25 338
GLENDNH3 X X X 2.00±0.01 0.22 303 X X X
Gandolfi 2.08±0.01 0.21 307 1.99±0.01 0.22 303 2.15±0.02 0.20 318
QMC700 X X X 2.01±0.01 0.27 332 X X X
KDE0v1 X X X 1.97±0.01 0.19 301 X X X
NRAPR X X X 1.95±0.01* 0.18* 7196 X X X
PNM L80 2.04±0.01 0.19 340 2.00±0.01 0.22 303 X X X
J35 L80 2.07±0.01 0.21 306 2.00±0.01 0.23 304 X X X

Note. Values of x c= dofmin
2 corresponding to global minima of cmin

2 in Hartle–Thorne spacetime are compared to values obtained for Kerr spacetimes in Török

et al. (2012). Asterisks denote that the indicated values of M and j are connected to the dark color area in Figures 4 and 5. In this case there is no intersection between
the spin frequency curve in the 2D EoS plane and the s2 level 3D volume around the global minima of the QPO model fit in the Hartle–Thorne spacetime. The local
minimum, c2Dmin

2 , at the 2D EoS plane is then assumed as a global minimum provided that the QPO frequency error bars are underestimated by a corresponding

factor, x c= dof2D 2Dmin
2 . The X-symbol indicates that the spin frequency 580 Hz is not reached even in this case. For the TD and WD models, the spin frequency is

not reached.

Figure 6. Twin-peak QPO data and examples of their individual fits. Top: best fits of data used in this work (black dots) vs. best fits of data (red dots) used by Lin et al.
(2011). Bottom: best fits assuming Kerr spacetime denoted by red lines (c = 189 20min,RP

2 d.o.f., c = 122 20min,TD
2 d.o.f). Best fits in Hartle–Thorne spacetimes are

denoted by blue lines (c = 243 19min,RP
2 d.o.f, c = 123 19min,TD

2 d.o.f.). Best fits in Hartle–Thorne spacetimes restricted to the parametric 2D surface given by SLy 4
EoS are denoted by black lines (c = 303 20min,RP

2 d.o.f, c = 2514 20min,TD
2 d.o.f). Best fits in Hartle–Thorne spacetimes restricted to the parametric 2D surface given

by SV EoS are denoted by dark blue lines (c = 327 20min,RP
2 d.o.f, c = 129 20min,TD

2 d.o.f). Best fits in Hartle–Thorne spacetimes restricted by SLy 4 Eos and NS
spin 580 Hz are denoted by green lines (c = 305 21min,RP

2 d.o.f, c = 15725 21min,TD
2 d.o.f). Best fits in Hartle–Thorne spacetimes restricted by SV EoS and NS spin

580 Hz are denoted by orange lines (c = 344 21min,RP
2 d.o.f, c = 2233 21min,TD

2 d.o.f).
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et al. (2011) is present when we assume Hartle–Thorne as well
as Kerr spacetime. There is c c cD º å ~ -sign 150i i

2( ) for
the bottom part of the curve (i Î ¼1 14{ }), while it is
cD ~ +20 for the top part of the curve (i Î ¼15 22{ }). The

possibly required non-geodesic corrections discussed by Török
et al. (2012) and Lin et al. (2011) therefore do not depend on
the chosen spacetime description (see also Török et al. 2016, in
this context). This conclusion is in a good agreement with the
suggestion of Török et al. (2012), who implied that the
parameters of RP model fits within Hartle–Thorne spacetime
should exhibit a degeneracy approximated as

= + + -M M j j q1 0.7 1.02 0.32 , 70
2( ) ( )

where = M M1.780 for 4U1636-53. This degeneracy is
illustrated in Figures 7 and 8, where we also quantify its
validity for the other models discussed here.

5.3. Consideration of Low-frequency QPOs

Strong restrictions to the model and implied NS mass may be
obtained when low-frequency QPOs are considered. This can
be clearly illustrated for the RP model, which associates the
observed low-frequency QPOs with the Lense–Thirring pre-
cession that occurs at the same radii as the periastron
precession. Within the framework of the model, the Lense–
Thirring frequency nL T represents a sensitive spin indicator
(Stella & Vietri 1998a, 1998b; Morsink & Stella 1999; Stella
et al. 1999). In our previous paper (Török et al. 2012) we
carried out a simplified estimate of the underlying NS angular
momentum and mass assuming Kerr spacetimes, arriving at
values of ~ ¸j 0.25 0.35 and ~ ¸ M M2.2 2.4( ) . These
values appeared too high when confronted with the

implications of the set of 5 EoS assumed within the paper.
As discussed here in Section 2, the extended set of EoS can be
more compatible with the expectations based on the considera-
tion of Lense–Thirring precession. It is straightforward to
extend our previous estimate to Hartle–Thorne spacetime and
all 18 EoS. The results of such an extension are included in

Figure 7. Color-coded maps indicating values of the dimensionless difference between the characteristic frequencies of orbital motion
dn n n nº -M M j q M, ,0 0( ( ) ( )) ( ) calculated assuming the Schwarzschild spacetimes =M M0( ) and Hartle–Thorne spacetimes. Individual panels assume the
chosen fixed values of parameters j andq̃ . Combinations of parameters indicated by green curves are given by relation (7), = + + -M M j j q1 0.7 1.02 0.320

2( ).
Frequencies are calculated at characteristic radii r3:2 and rms, where the Keplerian and periastron precession frequencies are in a 3:2 and 1:1 ratio.

Figure 8. Dimensionless quantity dn plotted for different values of q j2 and
relation (7). We do not include panels for radial and periastron precession
frequencies here because the values are the same as for the Keplerian
frequency.
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Figure 9. We show there 13 EoS that are compatible with the
observed twin-peak QPOs and RP model, and demonstrate that
8 of these EoS do not meet the requirements that are based on
the consideration of Lense–Thirring preccession. Only 5 EoS
are therefore compatible with the model.
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National Laboratory) for many useful discussions. We also
thank to the anonymous referee for the comments and
suggestions that greatly helped us to improve the paper.
Furthermore, we would like to acknowledge the hospitality of
the University of Oxford and the Astronomical Observatory in
Rome. Last but not least, we express our sincere thanks to the
concierges of the Mlýnská hotel in Uherské Hradiště for their
kind help and participation in organizing frequent workshops
of the Silesian university and the Astronomical institute.

REFERENCES

Abramowicz, M. A., Almergren, G. J. E., Kluźniak, W., & Thampan, A. V.
2003a, arXiv:gr-qc/0312070

Abramowicz, M. A., Bulik, T., Bursa, M., & Kluźniak, W. 2003b, A&A,
404, L21

Abramowicz, M. A., Karas, V., Kluźniak, W., Lee, W. H., & Rebusco, P.
2003c, PASJ, 55, 467

Abramowicz, M. A., & Kluźniak, W. 2001, A&A, 374, L19
Agrawal, B. K., Shlomo, S., & Au, V. K. 2005, PhRvC, 72, 014310
Akmal, A., Pandharipande, V. R., & Ravenhall, D. G. 1998, PhRvC, 58, 1804
Aliev, A. N., & Galtsov, D. V. 1981, GReGr, 13, 899
Alpar, M. A., & Shaham, J. 1985, Natur, 316, 239

Ansorg, M., Kleinwächter, A., & Meinel, R. 2003, A&A, 405, 711
Antoniadis, J., Freire, P. C. C., Wex, N., et al. 2013, Sci, 340, 448
Barret, D., & Boutelier, M. 2008, NewAR, 51, 835
Barret, D., Olive, J.-F., & Miller, M. C. 2005, MNRAS, 361, 855
Barret, D., Olive, J.-F., & Miller, M. C. 2006, MNRAS, 370, 1140
Belloni, T., Homan, J., Motta, S., Ratti, E., & Méndez, M. 2007, MNRAS,

379, 247
Belloni, T., Méndez, M., & Homan, J. 2005, A&A, 437, 209
Berti, E., White, F., Maniopoulou, A., & Bruni, M. 2005, MNRAS, 358, 923
Bonazzola, S., Gourgoulhon, E., & Marck, J.-A. 1998, PhRvD, 58, 104020
Bonazzola, S., Gourgoulhon, E., Salgado, M., & Marck, J. A. 1993, A&A,

278, 421
Boshkayev, K., Quevedo, H., Abutalip, M., Kalymova, Z., & Suleymanova, S.

2015, arXiv:1510.02016
Boutelier, M., Barret, D., Lin, Y., & Török, G. 2010, MNRAS, 401, 1290
Bursa, M. 2005, in Proc. RAGtime 6/7, Workshops on Black Holes and

Neutron Stars, ed. S. Hledík & Z. Stuchlík (Opava: Silesian Univ.), 39
Čadež, A., Calvani, M., & Kostić, U. 2008, A&A, 487, 527
Chandrasekhar, S., & Miller, J. C. 1974, MNRAS, 167, 63
Demorest, P. B., Pennucci, T., Ransom, S. M., Roberts, M. S. E., &

Hessels, J. W. T. 2010, Natur, 467, 1081
Dutra, M., Louren co, O., Avancini, S. S., et al. 2014, PhRvC, 90, 055203
Dutra, M., Louren co, O., Sá Martins, J. S., et al. 2012, PhRvC, 85, 035201
Galloway, D. K., Muno, M. P., Hartman, J. M., Psaltis, D., & Chakrabarty, D.

2008, ApJS, 179, 360
Gandolfi, S., Illarionov, A. Y., Fantoni, S., et al. 2010, MNRAS, 404, L35
Germanà, C., Kostić, U., Čadež, A., & Calvani, M. 2009, in AIP Conf. Ser.

1126, SIMBOL-X: Focusing on the Hard X-Ray Universe, ed.
J. Rodriguez & P. Ferrando (Melville, NY: AIP), 367

Gilfanov, M., Churazov, E., & Revnivtsev, M. 2000, MNRAS, 316, 923
Glendenning, N. K. 1985, ApJ, 293, 470
Hartle, J. B. 1967, ApJ, 150, 1005
Hartle, J. B., & Thorne, K. S. 1968, ApJ, 153, 807
Horák, J., Abramowicz, M. A., Kluźniak, W., Rebusco, P., & Török, G. 2009,

A&A, 499, 535
Kato, S. 2001, PASJ, 53, 1
Kato, S. 2007, PASJ, 59, 451
Kato, S. 2008, PASJ, 60, 111
Klähn, T., Blaschke, D., Sandin, F., et al. 2007, PhLB, 654, 170
Klähn, T., Blaschke, D., Typel, S., et al. 2006, PhRvC, 74, 035802
Kluźniak, W., & Abramowicz, M. A. 2001, arXiv:astro-ph/0105057
Kluźniak, W., & Abramowicz, M. A. 2002, arXiv:astro-ph/0203314
Kluźniak, W., Abramowicz, M. A., Kato, S., Lee, W. H., & Stergioulas, N.

2004, ApJL, 603, L89

Figure 9. Consideration of RP model assuming both low- and high-frequency QPOs and 13 EoS. The RP model mass-spin maps from Figure 5 are confronted with
requirements following from the identification of low-frequency QPOS with the Lense–Thirring precession frequency. The last panel includes the consideration of two
different EoS.

10

The Astrophysical Journal, 833:273 (11pp), 2016 December 20 Török et al.

162 Collection of the papers



Kluźniak, W., & Rosińska, D. 2013, MNRAS, 434, 2825
Kostić, U., Čadež, A., Calvani, M., & Gomboc, A. 2009, A&A, 496, 307
Lamb, F. K., Shibazaki, N., Alpar, M. A., & Shaham, J. 1985, Natur, 317, 681
Lin, Y.-F., Boutelier, M., Barret, D., & Zhang, S.-N. 2011, ApJ, 726, 74
Manko, V. S., Mielke, E. W., & Sanabria-Gómez, J. D. 2000, PhRvD, 61, 081501
Méndez, M. 2006, MNRAS, 371, 1925
Miller, J. C. 1977, MNRAS, 179, 483
Miller, M. C., Lamb, F. K., & Psaltis, D. 1998, ApJ, 508, 791
Morsink, S. M., & Stella, L. 1999, ApJ, 513, 827
Mukhopadhyay, B. 2009, ApJ, 694, 387
Newton, W. G., Gearheart, M., & Li, B.-A. 2013, ApJS, 204, 9
Nozawa, T., Stergioulas, N., Gourgoulhon, E., & Eriguchi, Y. 1998, A&AS,

132, 431
Pappas, G. 2015, MNRAS, 454, 4066
Pétri, J. 2005, A&A, 439, L27
Psaltis, D., Wijnands, R., Homan, J., et al. 1999, ApJ, 520, 763
Rezzolla, L., Yoshida, S., & Zanotti, O. 2003, MNRAS, 344, 978
Rikovska Stone, J., Guichon, P. A. M., Matevosyan, H. H., & Thomas, A. W.

2007, NuPhA, 792, 341
Rikovska Stone, J., Miller, J. C., Koncewicz, R., Stevenson, P. D., &

Strayer, M. R. 2003, PhRvC, 68, 034324
Rosińska, D., Kluźniak, W., Stergioulas, N., & Wiśniewicz, M. 2014, PhRvD,

89, 104001
Steiner, A. W., Gandolfi, S., Fattoyev, F. J., & Newton, W. G. 2015, PhRvC,

91, 015804
Steiner, A. W., Lattimer, J. M., & Brown, E. F. 2010, ApJ, 722, 33
Steiner, A. W., Prakash, M., Lattimer, J. M., & Ellis, P. J. 2005, PhR, 411, 325
Stella, L., & Vietri, M. 1998a, in Abstracts of the XIX Texas Symp. on

Relativistic Astrophysics and Cosmology, ed. J. Paul, T. Montmerle, &
E. Aubourg (Saclay, France: CEA)

Stella, L., & Vietri, M. 1998b, ApJL, 492, L59
Stella, L., & Vietri, M. 1999, PhRvL, 82, 17
Stella, L., & Vietri, M. 2001, in ASP Conf. Ser. 2000, X-ray Astronomy, ed.

R. Giacconi, S. Serio, & L. Stella (San Francisco, CA: ASP), 213

Stella, L., Vietri, M., & Morsink, S. M. 1999, ApJL, 524, L63
Stergioulas, N., & Friedman, J. L. 1995, ApJ, 444, 306
Strohmayer, T. E., & Markwardt, C. B. 2002, ApJ, 577, 337
Stuchlík, Z., Konar, S., Miller, J. C., & Hledík, S. 2008, A&A, 489, 963
Stuchlík, Z., Kotrlová, A., & Török, G. 2013, A&A, 552, A10
Stuchlík, Z., Kotrlová, A., Török, G., & Goluchová, K. 2014, AcA, 64, 45
Stuchlík, Z., Urbanec, M., Kotrlová, A., Török, G., & Goluchová, K. 2015,

AcA, 65, 169
Stute, M., & Camenzind, M. 2002, MNRAS, 336, 831
Titarchuk, L., & Wood, K. 2002, ApJL, 577, L23
Török, G. 2009, A&A, 497, 661
Török, G., Abramowicz, M. A., Bakala, P., et al. 2008a, AcA, 58, 15
Török, G., Abramowicz, M. A., Bakala, P., et al. 2008b, AcA, 58, 113
Török, G., Bakala, P., Stuchlik, Z., & Čech, P. 2008c, AcA, 58, 1
Török, G., Bakala, P., Šrámková, E., et al. 2012, ApJ, 760, 138
Török, G., Bakala, P., Šrámková, E., Stuchlík, Z., & Urbanec, M. 2010, ApJ,

714, 748
Török, G., Goluchová, K., Horák, J., et al. 2016, MNRAS, 457, L19
Török, G., & Stuchlík, Z. 2005, A&A, 437, 775
Török, G., Stuchlík, Z., & Bakala, P. 2007, CEJPh, 5, 457
Török, G., Urbanec, M., Adámek, K., & Urbancová, G. 2014, A&A, 564, L5
Urbanec, M., Běták, E., & Stuchlík, Z. 2010a, AcA, 60, 149
Urbanec, M., Miller, J. C., & Stuchlík, Z. 2013, MNRAS, 433, 1903
Urbanec, M., Török, G., Šrámková, E., et al. 2010b, A&A, 522, A72
van der Klis, M. 2005, AN, 326, 798
van der Klis, M. 2006, in Compact stellar X-ray sources, ed. W. Lewin &

M. van der Klis (Cambridge: Cambridge Univ. Press), 39
Wagoner, R. V. 1999, PhR, 311, 259
Wagoner, R. V., Silbergleit, A. S., & Ortega-Rodríguez, M. 2001, ApJL,

559, L25
Wang, D. H., Chen, L., Zhang, C. M., et al. 2015, MNRAS, 454, 1231
Watts, A. L. 2012, ARA&A, 50, 609
Wiringa, R. B., Fiks, V., & Fabrocini, A. 1988, PhRvC, 38, 1010
Zhang, C.-M. 2005, ChJAS, 5, 21

11

The Astrophysical Journal, 833:273 (11pp), 2016 December 20 Török et al.

6.5. Constraining Models of Twin-Peak QPO with Realistic Neutron Star EoS 163



Paper VI

6.6. Twin peak quasi-periodic oscillations as signature of oscillating

cusp torus

Török Gabriel, Goluchová Kateřina, Horák Jiřı́, Šrámková Eva, Urbanec Martin,
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ABSTRACT
Serious theoretical effort has been devoted to explain the observed frequencies of twin-peak
quasi-periodic oscillations (HF QPOs) observed in low-mass X-ray neutron star binaries. Here
we propose a new model of HF QPOs. Within its framework we consider an oscillating torus
with cusp that changes location r0 of its centre around radii very close to innermost stable
circular orbit. The observed variability is assigned to global modes of accreted fluid motion
that may give strong modulation of both accretion disc radiation and the accretion rate. For a
given space–time geometry, the model predicts that QPO frequencies are function of single
parameter r0. We illustrate that the model can provide fits of data comparable to those reached
by other models, or even better. In particular, it is compared to relativistic precession model.
Moreover, we also illustrate that the model consideration is compatible with consideration of
models of a rotating neutron star in the atoll source 4U 1636−53.

Key words: accretion, accretion discs – equation of state – stars: neutron – X-rays: binaries.

1 IN T RO D U C T I O N

Many models have been proposed to explain a phenomenon of high-
frequency quasi-periodic oscillations (QPOs) observed in neutron-
star low-mass X-ray binaries (HF QPOs in LMXBs). It is believed
that HF QPOs are carrying signatures of strong gravity and dense
matter composition. Serious theoretical effort has been devoted to
explain the observed frequencies and their correlations (see e.g.
Török et al. 2012, for further information and a large list of refer-
ences to various individual models of HF QPOs). In this section,
we only briefly recall two particular outstanding theoretical frame-
works.

One of the first QPO models, the so-called relativistic-precession
model (RP model) identifies the twin-peak kHz QPO frequencies
νU and νL with two fundamental frequencies of a nearly circular
geodesic motion: the Keplerian orbital frequency and the periastron-
precession frequency,

νU = νK, νL = νper = νK − νr , (1)

where νr denotes the radial epicyclic frequency. The correlations
among them is then obtained by varying the radius of the underlying
circular orbit in a reasonable range. Within this framework it is
usually assumed that the variable component of the observed X-
ray signal originates in a bright localized spot or blob orbiting the
neutron star on a slightly eccentric orbit. The observed radiation

�E-mail: gabriel.torok@physics.cz

is then periodically modulated due to the relativistic effects. It has
been shown that the model is roughly matching the observed νU (νL)
correlations (Stella & Vietri 1999; Belloni, Méndez & Homan 2007;
Török et al. 2012). Nevertheless, the RP model also suffers some
theoretical difficulties. It is not clear whether the modulation of
a radiation from a small localized spot can produce sufficiently
strong signal modulation to explain a relatively large observed HF
QPO amplitudes. It is then expected that larger spots (giving higher
amount of modulated photons) can undergo a serious shearing due to
the differential rotation in the surrounding accretion disc. This does
not agree with a high coherence of the HF QPO signal which is often
observed. The model also lacks an explanation of inferred existence
of preferred orbits which should be responsible for appearance of
HF QPO pairs (twin peaks) and clustering of their frequencies.

Only slightly later, Abramowicz & Kluźniak (2001) and Kluzniak
& Abramowicz (2001) proposed the concept of orbital resonance
models. Within this concept, HF QPOs originate in resonances be-
tween oscillation modes of the accreted fluid. The most quoted,
so-called 3:2 epicyclic resonance model, identifies the resonant
eigenfrequencies with frequencies νθ and νr of radial and verti-
cal epicyclic axisymmetric modes of disc (or torus) oscillations. It
is assumed that

νU = νθ , νL = νr ⇔ νU/νL = 3/2 , (2)

while the correlation νU (νL) arises from resonant corrections to the
eigenfrequencies (Abramowicz et al. 2005). We stress that the model
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deals with a collective motion of the accreted matter.1 Moreover,
the oscillation modes of innermost region of the accretion flow can
modulate the amount of matter transferred to NS surface through
the boundary layer (Paczynski 1987; Horák 2005; Abramowicz,
Horák & Kluzniak 2007). Therefore, it may naturally explain both
high amplitudes and coherence of the HF QPOs. Nevertheless, it is
questionable whether the resonant corrections to the eigenfrequen-
cies can be large enough to explain the whole observed range of
νU and νL. Furthermore, it has been shown that the model implies
large range of NS masses and has difficulties when confronted to
models of rotating NS based on up-to-date equations of state (EoS;
see Urbanec et al. 2010b; Török et al. 2012).

Motivated by partial success of the above models and their com-
plementary difficulties, we present a modified framework for inter-
preting the HF QPOs.

2 O S C ILLATI N G C U S P TORI

Our model is largely based on the theoretical work of Straub &
Šrámková (2009). We adopt Kerr geometry to describe slowly rotat-
ing compact NS. We assume that the innermost region of accretion
flow is hot enough to form a pressure supported torus of a moderate
thickness. Assuming a non-relativistic polytropic EoS and neglect-
ing the poloidal components of the fluid velocity (so that the fluid
follows circular orbits), the equilibrium torus shape and its structure
are completely determined by the Lane–Embden function, which is
given by a simple analytic formula (Abramowicz et al. 2006; Straub
& Šrámková 2009)

f = 1 − 1

nc2
s0

ln
E
E0

. (3)

In this equation, E denotes the energy of a particle on a (non-
geodesic) circular orbit having the specific angular momentum �.
We assume that the angular momentum is constant in the whole
volume of the torus, � = �0 = const. Since we assume that the
torus is located in the vicinity of the innermost stable circular orbit
(ISCO, r = rms), where also Keplerian angular momentum is nearly
constant, we believe it is a reasonable approximation. Meaning of
other symbols in equation (3) is straightforward: n is the polytropic
index (n = 3 for a radiation-pressure-dominated fluid) and cs0 is
the sound speed at the centre of the torus located at radius r0 in the
equatorial plane, where the pressure gradient vanishes and energy
E takes the value E0. Vanishing of the pressure forces at the torus
centre implies the streamline r = r0, θ = π/2 to be a geodesic
line because of which the fluid angular momentum takes Keplerian
value at that radius, �0 = �K(r0).

2.1 Torus size

The surfaces of constant density and pressure coincide with those
of constant f and their values can be calculated from f by ρ = ρ0f n

and p = p0f n+1, where ρ0 and p0 refer to the values at the torus
centre that corresponds to f = 1. On the other hand, the surface of
the torus, where both pressure and density vanishes, is given by the
condition f = 0. It is also worth to note that the position of the centre
r0 and the shape of these surfaces are entirely given by the value

1 A different class of models dealing with collective motion of accreted
matter considers normal modes of accretion disc oscillations, referred to as
discoseismology (e.g. Kato 2001; Wagoner, Silbergleit & Ortega-Rodrı́guez
2001).

of �0 and the space–time geometry, while the particular values of
p and ρ and consequently the location of the overall surface of the
torus are set by the central value of the sound speed cs0.

Straub & Šrámková (2009) introduce a dimensionless parameter
β that characterizes the size of the torus,

β =
√

2ncs0

r0E0

(
�0 g

φφ
0 − g

tφ
0

) . (4)

This parameter is roughly proportional to the Mach number of the
flow at the torus centre as can be seen from its Newtonian limit
β = √

2n(cs/r
)0 (see also Blaes 1985). In addition, it is also
roughly proportional to the ratio of the radial (or vertical) extension
of the torus to its central radius r0. Hence, the sound-crossing time
and the dynamical time-scale of the torus are roughly similar.

2.2 Marginally overflowing tori (cusp tori)

The stationary solution does not exist for an arbitrary large value
of β (Abramowicz, Jaroszynski & Sikora 1978). In addition to
the obvious limit β ≤ β∞ corresponding to tori whose outer edge
extends to infinity, there is a much stronger constrain coming from
general relativity that significantly limits the torus size close to
ISCO. Large enough tori that extend below the ISCO radius, may
be terminated there by a ‘cusp’, where the rotation of the flow
becomes Keplerian again. This is a consequence of the fact that the
Keplerian angular momentum reaches its minimum at ISCO.

The cusp corresponds to a saddle point of the Lane–Embden
function and the corresponding self-crossing equipotential limits
the surface of any stationary rotating fluid configuration with given
angular momentum �0. Fluid that appear outside this surface, is
accreted on to the central star on the dynamical time-scale driven
by gravity and pressure forces without need of viscosity (Paczynski
1977). Abramowicz et al. (1978) calculated analytically the accre-
tion rate from a slightly overflowing torus, their result agrees very
well with numerical simulations.

The critical value of β giving a marginally overflowing torus
follows from equations (3) and (4),

βc(r0) =
√

2 ln (Ec/E0)

r0E0

(
�0 g

φφ
0 − g

tφ
0

) , (5)

where Ec = E(rc) is the particle energy at the cusp. Its location r = rc

can be found by equating the Keplerian angular momentum to the
fluid angular momentum �0. This procedure leads to the third-order
algebraic equation (in

√
rc), giving the position of the cusp in terms

of the location of the torus centre.
If the stellar spin is neglected (j = 0), the equation is reduced to

the quadratic one and its solution can be expressed as

rc = r0

(
M + √

(2r0 − 3M)M

r0 − 2M

)2

, r0 ≥ 6M (6)

and the critical β-parameter reads

βc = (r0 − rc)(r0 − 2M)2[r0rc − 2M(r0 + 2rc)]1/2

rcr0(rc − 2M)1/2(r0 − 3M)1/2
. (7)

This can be used for r0 � 10.47 M, where β = β∞.

2.3 Frequencies of epicyclic oscillations

Abramowicz et al. (2006) pointed out the existence of the radial
and vertical epicyclic modes that describes a global motion of the
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torus. They have found that, in the limit of infinitesimally slender
tori β → 0, frequencies of these modes νR and νV measured in the
fluid reference frame coincide with the epicyclic frequencies of test
particles,

νr =
(

1 − 6M

r
+ 8jM3/2

r3/2
− 3j 2M2

r2

)1/2

νK, (8)

νθ =
(

1 − 4jM3/2

r3/2
+ 3j 2M2

r2

)1/2

νK, (9)

while at fixed azimuth their frequencies are given by
νR, m = νr + mνK and νV, m = νθ + mνK with m being the in-
teger azimuthal wavenumber. In particular, the m = −1 radial and
vertical modes give the frequencies of the periastron and nodal pre-
cession of a weakly eccentric and tilted torus. It is also worth to
note that they describe a collective motion of the fluid, rather than
a motion of individual particles.

In a more realistic case, when β > 0, the pressure gradient con-
tributes to the restoring force of the perturbed torus shifting their
frequencies to new ‘corrected’ values,

νR,m(r0, β) = νr(r0) + mνK(r0) + �νR,m(r0, β), (10)

νV,m(r0, β) = νθ (r0) + mνK(r0) + �νV,m(r0, β). (11)

The pressure corrections �νR, m and �νR, m have been calculated
by Straub & Šrámková (2009) using perturbation expansion in
β-parameter. They found that the first non-zero corrections are of
the order of β2.

3 FR E QU E N C Y I D E N T I F I C AT I O N

We identify the observed HF QPO frequencies with frequencies
of the epicyclic modes of torus oscillations. We propose that the
upper kilohertz QPO frequency is the Keplerian orbital frequency
of the fluid at the centre of the torus, where both pressure and
density peaks and from which most of the torus radiation emerges.
The lower kilohertz QPO corresponds to the frequency of the non-
axisymmetric m = −1 radial epicyclic mode. Overall, there is

νU ≡ νK(r0), νL ≡ νR,−1(r0, β). (12)

The QPO frequencies are then strong functions of the position of the
centre of the torus r0 and its thickness β. Obviously, the choice of
β = 0 (slender tori) recovers the RP model frequencies. In the case
of a finite thickness β > 0, they also weakly depend on the value
of the polytropic index n. In next, we fix n = 3 as the inner parts of
the accretion flow are believed to be radiation-pressure-dominated.

We assume the cusp configuration

β(r0)
.= βc(r0). (13)

In other words, we expect that for given r0 the torus is always close
to its maximal possible size, just filling its ‘Roche-like’ lobe. Thus,
for a given accreting central compact object, our model predicts that
the QPO frequencies are functions of a single parameter r0,

νu ≡ νK(r0), νl ≡ νR,−1 [r0, βc(r0)] . (14)

Therefore, one obtains a unique correlation among them by chang-
ing this parameter in a physically reasonable range.

3.1 Applicability of the adopted approximation

The above equations are exact for Kerr space–times and represent
an acceptable approximation for high-mass neutron stars (Urbanec,

Miller & Stuchlı́k 2013). Another restriction on their applicability
follows from the adopted description of torus dynamics assuming
a second order expansion in βc. Consequently we can assume only
βc � 0.3. For j = 0, this corresponds to tori with radial extension
rout − rc ≡ �r � 10M . Neglecting the effects of neutron star rota-
tion, equation (14) implies a relation between torus thickness βc and
frequency ratio R ≡ νu/ν l. We show this relation in Fig. 1a. From
this figure we can see that our approximation can be well applied
when R � 1.7, while for R > 2 it is not sufficient.

4 A PPLICATION TO O BSERVED TWIN
P E A K Q P O S

Lin et al. (2011) and Török et al. (2012) have confronted several HF
QPO models with data of the atoll source 4U 1636−53 displaying
twin peak QPOs mostly within the range of R ∈ [1.25–1.7]. They
have outlined comparison between individual matches of the model
to the data as well as quantitative estimates of the inferred NS
parameters. The data points assumed in the former study come
from a common processing of a large amount of data while the data
points used in the latter study correspond to individual continuous
observations of the source. As discussed in Török et al. (2012),
results of both studies are consistent.

Here, we confront the cusp torus model with the previously ex-
amined data. We primarily assume the data points of Lin et al.
(2011) that span a larger range of frequencies but we also check the
results for the data points corresponding to continuous segments of
observation.

4.1 Non-rotating approximation

First, we investigate the case of a simple one-parametric fit assuming
non-rotating NS. This way we can obtain comparison with the RP
model and a rough estimate of the NS mass implied by our cusp torus
model. In Fig. 1b, we plot the sequence of equipotential contours
of cusp tori that provide the best match to the 4U 1636−53 data. In
Fig. 1c, we show this best fit. The best fit of the RP model is included
for the sake of comparison. Clearly, the cusp torus model matches
the observed trend better than the RP model. We have χ2/dof = 2.3
for the torus model while it is χ2/dof = 16.4 for the RP model. The
NS mass inferred from the cusp torus model, within 2σ confidence
level, reads

M0 = 1.69[±0.02] M� . (15)

For the data points corresponding to continuous segments of obser-
vation we obtain the same mass, M0 = 1.69[±0.01] M�.

4.2 Consideration of NS rotation

In analogy to results of Török et al. (2012), we may expect that
the mass (15) belongs to a mass–angular-momentum relation im-
plied by the cusp torus model. The result of the two-dimensional
fitting of the parameters M and j is shown in Fig. 2a. Indeed, the
best fits are reached when M and j are related through the specific
relation. This relation can be approximated by a quadratic form,
M = M0(1 + 0.68(j + j2)), which results for each of the two data
sets.

5 D I S C U S S I O N A N D C O N C L U S I O N S

There is good evidence on the NS spin frequency of 4U 1636−53
based on X-ray burst measurements. Depending on the hotspot
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Figure 1. (a) Relation between the thickness of cusp torus and the expected frequency ratio R. The vertical shadow region indicates the interval of R
corresponding to most of the available data of the atoll source 4U 1636−53. (b) Sequence of cusp tori corresponding to a one-parametric fit (j = 0). The
colour-coding is the same as in panel (c). Neutron star radii rNS are drawn for three particular NS EoS (Gle, APR, and GAN) that are further assumed within
Fig. 2. The bottom panel indicates angular momentum behaviour together with positions of the torus centre r0 and both inner and outer edge rc and rout. (c)
Corresponding frequency relation plotted together with the data points. For the sake of comparison we also present the best fit implied by the RP model (j = 0).

Figure 2. (a) The mass-angular momentum countours resulting from fitting of data points by the cusp torus model vs. mass–angular-momentum relations
predicted by models of rotating NS. These are drawn for several NS EoS and spin 290Hz or 580 Hz inferred from the X-ray burst measurements. The two spots
indicate chosen combinations of angular momentum where the QPO model and EoS relations overlap. (b) Consideration of combinations of β and r exactly
matching individual data points for the two chosen combinations of mass and angular momentum. The colour-coding is the same as in Fig. 1c. The red line
denotes the numerically calculated cusp torus relation.

model consideration, the spin νS reads either νS

.= 290 Hz or νS

.=
580 Hz (Strohmayer & Markwardt 2002). The value of 580Hz is
usually preferred. We can therefore roughly compare the cusp torus
model predictions to predictions of models of rotating NS.

5.1 Neutron star equation of state and radius

In Fig. 2a, we include several mass-angular momentum relations
expected from models of rotating NS. We assume the following
set of EoS - SLy 4, APR, AU-WFF1, UU-WFF2 and WS-WFF3
(Wiringa, Fiks & Fabrocini 1988; Stergioulas & Friedman 1995;
Akmal, Pandharipande & Ravenhall 1998; Rikovska Stone et al.
2003).2

Inspecting Fig. 2a, we can see that there are overlaps between the
relations given by models of rotating stars and the relation inferred
from the cusp torus model. In the figure we denote two particular
values of angular momentum together with corresponding masses
that roughly represent these overlaps. Assuming the two chosen

2 In our calculations we follow the approach of Hartle & Thorne (1968),
Chandrasekhar & Miller (1974), Miller (1977), and Urbanec et al. (2013).

combinations of mass and angular momentum, we attempted in
Fig. 2 b to fit the data by the torus frequencies considering any torus
thickness, not only βc. We searched for the combinations of β and
r exactly matching each individual data point. Clearly, the obtained
values are distributed very close to the cusp relation (13), β = βc(r),
where we have r > rNS.

5.2 Model perspectives

A more careful and computationally demanding investigation of
the spin influence following the work of Straub & Šrámková (2009)
and assuming the Hartle–Thorne space–time should be applied in
a consequent work following our study assuming high-mass NS
approximation. Nevertheless, we can conclude that there is a very
strong indication that twin peak QPOs can be identified with a par-
ticular non-axisymmetric m = −1 radial epicyclic mode and Kep-
lerian orbital motion associated with the cusp torus. These modes
may naturally give strong modulation of both emerging radiation
and the accretion rate and their eigenfunctions change only weakly
on the spatial scale of the turbulent motion. They are therefore very
good candidates for explaining high amplitudes of HF QPOs.
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5.2.1 Low frequency QPOs

The presented concept has the potential to explain also the observed
low-frequency QPOs. As noticed by Kluźniak & Rosińska (2013)
and Rosińska et al. (2014) the frequencies of vertical modes seem to
be very sensitive to the NS quadrupole moment. Their consideration
thus may exceed the framework of Kerr space–time approximation
adopted here. However, we roughly investigated also the frequencies
of non-axisymmetric m = 1 vertical epicyclic mode of cusp tori.
This mode corresponds to a low-frequency global precession of
inclined torus and is analogical to the ‘tilted hot flow precession’
discussed by Ingram & Done (2010). Assuming the same mass,
angular momentum and radii as those in Fig. 2 we obtained values of
tens of Hertz that are of the same order as the observed frequencies.
The m = −1 vertical epicyclic mode may therefore play the same
role in the framework of cusp torus model as the Lense–Thirring
precession in the framework of RP model.
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D, 89, 104001
Stella L., Vietri M., 1999, Phys. Rev. Lett., 82, 17
Stergioulas N., Friedman J. L., 1995, AJ, 444, 306
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and Martin Urbanec1

1 Institute of Physics and Research Centre for Computational Physics and Data Processing, Faculty of Philosophy & Science, Silesian University in Opava,
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ABSTRACT
Twin-peak quasi-periodic oscillations (QPOs) are observed in several low-mass X-ray binary
systems containing neutron stars. Timing the analysis of X-ray fluxes of more than dozen of
such systems reveals remarkable correlations between the frequencies of two characteristic
peaks present in the power density spectra. The individual correlations clearly differ, but they
roughly follow a common individual pattern. High values of measured QPO frequencies and
strong modulation of the X-ray flux both suggest that the observed correlations are connected
to orbital motion in the innermost part of an accretion disc. Several attempts to model these
correlations with simple geodesic orbital models or phenomenological relations have failed in
the past. We find and explore a surprisingly simple analytic relation that reproduces individual
correlations for a group of several sources through a single parameter. When an additional
free parameter is considered within our relation, it well reproduces the data of a large group
of 14 sources. The very existence and form of this simple relation support the hypothesis
of the orbital origin of QPOs and provide the key for further development of QPO models.
We discuss a possible physical interpretation of our relation’s parameters and their links to
concrete QPO models.

Key words: accretion, accretion discs – stars: neutron – X-rays: binaries.

1 IN T RO D U C T I O N

Black holes (BHs) and neutron stars (NSs) represent the accreting
compact component in several tens of X-ray binaries. In low-mass
X-ray binary systems (LMXBs), the mass transfer from the compan-
ion on to the compact object occurs due to the Roche lobe’s overflow.
An accretion disc is formed enhancing these objects through high
X-ray luminosity coming from its innermost parts. In NS systems,
additional strong radiation arises from the disc–NS boundary layer
(e.g. Lewin, van Paradijs & van den Heuvel 1997).

The LMXBs exhibit a variability over a large range of frequen-
cies. Their power density spectra contain relatively coherent features
known as quasi-periodic oscillations (QPOs; van der Klis 2000;
Belloni, Psaltis & van der Klis 2002; McClintock & Remillard 2006;
van der Klis 2006, and references therein). Apart from strong,
the so-called low-frequency (LF) QPOs observed in the range
of 0.1–100 Hz, there are also the high-frequency (HF) QPOs ob-
served in the range of 40–1300 Hz. Commonly, for BH and NS
sources, HF QPOs attract large attention of theoreticians since their

� E-mail: gabriel.torok@gmail.com

frequencies correspond to orbital time-scales in the vicinity of the
compact object. The strong indication that the corresponding signal
originates in the innermost parts of the disc is also supported by the
results of the Fourier-resolved spectroscopy (Gilfanov, Churazov &
Revnivtsev 2000). In this context, a large variety of models of the
observed fast variability has been proposed (Alpar & Shaham 1985;
Lamb et al. 1985; Miller et al. 1998; Psaltis et al. 1999; Kato 2001;
Kluźniak & Abramowicz 2001; Wagoner et al. 2001; Stella &
Vietri 2001; Titarchuk & Wood 2002; Abramowicz et al. 2003b;
Rezzolla, Yoshida & Zanotti 2003; Kluźniak et al. 2004;
Zhang 2004; Bursa 2005; Pétri 2005; Čadež et al. 2008; Mukhopad-
hyay 2009; Stuchlı́k et al. 2013, and several others).

The NS LMXBs reveal characteristic pairs of HF QPOs, the
so-called twin-peak QPOs. More than a dozen of systems exhibit
remarkable correlations between their ‘upper’ and ‘lower’ frequen-
cies, νU and νL. In this letter, we focus on these frequencies. We
remind the reader that other properties of each oscillation, such as
the rms amplitude A and quality factor Q, strongly vary reaching
values of up to Q ∼ 250 and A ∼ 20 which are much higher than
those associated to HF QPOs in BH systems. The variations of
the quantities are correlated also with the two QPO frequencies
(e.g. van Straaten et al. 2002; Barret, Olive & Miller 2005a,b,
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(a) (b) (c)

Figure 1. The expected and observed correlations between the frequencies of twin-peak QPOs. (a) Frequencies of twin-peak QPOs in 14 sources. The black
curve indicates the prediction of the RP model assuming a non-rotating NS with M = 2M�. (b) Parameters of various relations fitting the frequencies displayed
in panel (a) and the slope intercept anticorrelation found by Abramowicz et al. (2005b,a) (red line). For the clarity of drawing, we rescale the parameters of
the individual relations as follows. Linear: A = a, B = b; quadratic: A = 694 a + 0.06, B = b − 500; square-root: A = a/30 + 0.2, B = b + 400; power
law: A = 42.86 a + 0.29, B = 500 b. The units of coefficients are chosen such that A is dimensionless and B is given in the units of Hz. In two cases, the
parameters resulting for Circinus X-1 exceed the displayed range. There is A = 8.36 and B = −298 for the quadratic relation, and A = 1.57 and B = 273 for
the square-root relation. (c) A comparison between the shape of νU (νL) curves predicted by the RP model (black line), CT model (blue line) and relation (5) for
B ∈ {0.6, 0.8, 1.0, 1.2} (dashed red lines). Note that the RP model curve coincides with those given by relation (5) for B = 1 while the CT model curve nearly
overlaps with those given by relation (5) for B = 0.8.

Table 1. List of sources, references and parameters obtained through data matching. Goodness of fits is formally characterized by χ2 values (we use the same
procedure as Török et al. 2012, displayed errors correspond to standard errors). The individual columns displaying χ2 values correspond to relation (5) in its
one- and two-parametric form, RP model and CT model. For these two models, we assume a non-rotating NS (as discussed in Török et al. 2016a, the spin
consideration almost does not improve the fits). References: (1)–(3), (10)–(12) - Barret et al. (2005a,b, 2006), (4) - Boirin et al. (2000), (5) - Altamirano et al.
(2010), (6) - Homan et al. (2002), (7) - van der Klis et al. (1997), (8) - Boutloukos et al. (2006), (9) - Linares et al. (2005), (13) - Jonker et al. (2000) and (14) -
Jonker et al. (2002).

Source No./ Name M χ2

d.o.f .
M(B) B χ2

M(B)
d.o.f .

MRP
M�

χ2
RP

d.o.f .
MCUSP
M�

χ2
CUSP

d.o.f .
Data

Typea points

1/A 4U 1608-52 1.80±0.01 1.6 1.79±0.04 0.79±0.03 1.7 1.94 10.1 1.74±0.01 1.9 12

2/A 4U 1636-53 1.70±0.01 2.0 1.70±0.01 0.8±0.01 2.1 1.79 17.4 1.69±0.01 3.4 22

3/A 4U 1735-44 1.69±0.01 2.1 1.48±0.10 0.61±0.06 1.0 1.81 5.1 1.66±0.01 1.4 8

4/A 4U 1915-05 1.58±0.03 0.8 1.65±0.03 0.82±0.01 0.2 2.09 28.6 −b −b 5

5/A IGR J17191-2821 1.58±0.02 0.6 1.63±0.20 0.85±0.2 0.8 1.76 0.6 1.52±0.02 0.6 4

6/Z GX 17+2 1.89±0.02 1.2 1.77±0.07 0.72±0.04 0.8 2.08 5.5 1.83±0.02 0.9 10

7/Z Sco X-1 1.82±0.01 1.0 1.81±0.01 0.8±0.01 1.0 2.0 24.2 1.76±0.01 2.3 39

8/Z Cir X-1 0.74±0.10 1.2 1.42±0.5 0.89±0.06 1.1 2.23 1.3 −b −b 11

9/P XTE J1807.4-294 2.61±0.11 0.8 2.85±0.25 0.86±0.07 0.8 3.27 1.4 −b −b 7

10/A 4U 1728-34 1.57±0.01 3.2 1.35±0.12 0.65±0.06 2.5 1.74 5.7 1.51±0.01 2.8 15

11/A 4U 0614+09 1.71±0.02 5.1 1.39±0.06 0.62±0.02 1.1 1.90 14.7 1.65±0.01 3.4 13

12/A 4U 1820-30 1.81±0.01 9.3 1.53±0.07 0.58±0.03 3.2 1.93 24.2 1.78±0.01 6.4 23

13/Z GX 340+0 1.62±0.08 4.2 2.23±0.10 1.10±0.08 1.6 2.07 1.8 −b −b 12

14/Z GX 5-1 1.65±0.10 16.7 2.31±0.04 1.11±0.02 1.5 2.13 3.1 −b −b 21

aA - atoll, Z - Z, P - pulsar. bThe observed frequencies extend below the expected range of physical applicability of CT model discussed by Török et al. (2016b).

2006; Méndez 2006; van der Klis 2006; Török 2009; Wang
et al. 2014).

2 B E H AV I O U R A N D F I T S O F T H E
F R E QU E N C Y C O R R E L AT I O N S

The frequency correlations observed in the individual sources
clearly differ, but they roughly follow a common individual pat-
tern. This is illustrated in Fig. 1a that displays twin-peak QPOs
observed in 14 different sources. These include eight atoll sources,
five Z-sources and a millisecond X-ray pulsar. Detailed X-ray tim-
ing studies of these objects which have been carried out over the
last two decades reveal a large amount of information. A list of

individual sources along with a dozen of related references is given
in Table 1. Apart from the data points, we include in Fig. 1a a
curve that indicates the trend predicted by the relativistic preces-
sion model of HF QPOs – hereafter RP model (see, e.g. Stella &
Vietri 1999; Stella & Vietri 2001; Belloni, Méndez & Homan 2005;
Török et al. 2016a).

Several attempts to model the individual observed correlations
with simple geodesic orbital models or phenomenological relations
have failed in the past (e.g. Lin et al. 2011; Török et al. 2012, 2016a,
and references therein). In several particular cases, fits are reliable
when two free parameters specific for each source are considered
(e.g. Psaltis et al. 1998; Abramowicz et al. 2005b,a; Zhang 2006),
although there are still numerous clear deviations of data from
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the expected trend. For instance, fitting by straight lines typically
provides a reasonable match (but deviation from linear trend is
apparent, e.g. in a large amount of data available for the atoll source
4U 1636-53; Lin et al. 2011; Török et al. 2012).

It has been noticed by Abramowicz et al. (2005b,a) that the slope
a and intercept b of the linear fits obtained for several sources are
roughly related as

a ≈ 1.5 − 0.0015b (assuming νU = aνL + b) . (1)

In Fig. 1b, we illustrate the coefficients a and b obtained for each of
the sources listed in Table 1. Within the figure, we furthermore illus-
trate the coefficients obtained for the other two-parametric fitting
relations. These are namely the quadratic relation, νU = aν2

L
+ b,

the square-root relation, νU = a
√

ν
L
+ b, and the power-law rela-

tion, νU = b(1νL)a . For each of these relations, including relation
(1), the units of coefficients are chosen such that a is dimensionless
while b is given in the units of Hz. Inspecting Fig. 1b, one can spec-
ulate that the frequency correlations within a large group of sources
can be described by the means of a single parameter.

3 A SIMPLE F O RMULA R EPRO DUCING THE
I N D I V I D UA L C O R R E L AT I O N S

In the series of works (Török et al. 2010, 2012, 2016a), the effec-
tive degeneracy between various parameters of several orbital QPO
models has been discussed. Within this degeneracy, each combina-
tion of NS mass M, angular momentum j and quadrupole moment
q corresponds to a certain value of a single generalized parameter
M, e.g. non-rotating NS mass. It follows that, when these parame-
ters dominate and only non-geodesic effects that do not much vary
across different systems are assumed within a given QPO model,
one may expect that the correlations can be described by a one-
parametric relation,

νL,U ∝ (r, M) ⇒ νL = νL (νU , M) , νU = νU (νL, M) , (2)

where the common internal parameter r does not appear in the func-
tion νU (νL). This expectation is in good agreement with the possible
degeneracy of the two-parametric frequency relations mentioned in
Section 2.

3.1 Frequency scaling

Motivated by the above mentioned findings, we attempt to model
the observed correlations with the following relation:

νL = νU

(
1 − B

√
1 − (νU/ν0)2/3

)
, (3)

where ν0 represents the highest possible QPO frequency, ν0 ≥ νU ≥
νL. In the specific case when it is assumed that ν0 equals the Keple-
rian orbital frequency at the innermost stable circular orbit around
a non-rotating NS with gravitational mass M, it can be expressed
in the units of Hz as (e.g. Kluzniak & Wagoner 1985; Kluzniak,
Michelson & Wagoner 1990)

ν0 = νISCO = 1

63/2

c3

2πG

1

M
= 2198

M�
M

= 2198
1

M . (4)

Consequently, relation (3) can be written in the form

νL = νU

(
1 − B

√
1 − 0.0059 (νUM)2/3

)
. (5)

Considering B = 1, relation (5) coincides with the frequency rela-
tion implied by the RP model. Moreover, for any constant value of

B, relation (5) implies 1/M scaling of the QPO frequencies. This
means that the [νL, νU ] frequency pairs calculated for a certain value
of M = M1 can be recalculated for another value, M = M2, us-
ing a simple multiplication,

[νL, νU ]2 = [νL, νU ]1 × (M1/M2). (6)

In Fig. 1c, we illustrate the shape of νU (νL) curves given by relation
(5) and compare them to the predictions of two previously proposed
models of QPOs. We assume in this section for relation (5) to have
either one-parametric or two-parametric form, and in both cases we
make a comparison with the data of the individual sources. We then
provide a more detailed discussion on the motivation for our choice
of the form of relation (5) in Section 4.

3.2 The one-parametric relation (pure 1/M scaling)

Taking into account expectation (2), we attempt to reproduce the
data of the 14 sources listed in Table 1 assuming relation (5) for
a fixed value of B = 0.8. The particular choice of B = 0.8 stems
from the results of Török et al. (2012). At the same time, it links
relation (5) to a QPO model introduced by Török et al. (2016b)
which deals with marginally overflowing inner accretion tori. See
Fig. 1c for illustration and Section 4 for a more detailed discussion
on this matter.

The results obtained for the whole set of sources are presented
in Table 1 and illustrated in Fig. 2a. Remarkably, for the sources
1–9 good agreement is obtained. For each of these sources, there is
0.5 < χ2/d.o.f. � 2. These sources span (approximately) the range
of νL ∈ (200, 900)Hz and include the atoll source 4U 1915-05 that
itself covers a large range of frequencies, νL ∈ (200, 800)Hz. We
can also see from Fig. 2a that the trend observed in each of the
sources 10–12 is still matched.

The two sources, GX 5-1 and GX 340+0, reveal clear deviations
of data from the expected trend (see the last sub-panel of Fig. 2a). In
Table 1, we include relevant χ2 values along with the values of the
M parameter obtained for each of the considered 14 sources. The
obtained M parameter values range from M = 0.7 to M = 2.6
while in most cases there is M ∈ (1.6, 1.9).

3.3 The consideration of the B parameter as a free parameter

As a second step, using relation (5), we attempt to reproduce the
data assuming two free parameters (M andB). The results are again
presented in Table 1 and illustrated in Fig. 2a.

Clearly, for each of the 14 sources including GX 5-1 and GX
340+0 (no. 13 and 14), the observed trend is well matched (although
there is some scatter of data points around the expected curves).
In Table 1, we summarize the relevant χ2 values along with the
obtained values of M and B. The values of M range from M =
1.39 to M = 2.85 while the values of B range from B = 0.61 to
B = 1.11 [in most cases, there is B ∈ (0.1, 0.4)].

4 PH Y S I C A L I N T E R P R E TATI O N

We begin this section by briefly recalling the RP model that is most
often discussed in relation to the possibility of hotspots arising in
the innermost accretion region. This model relates the frequencies
of the two observed QPOs to the Keplerian frequency νU = νK and
the relativistic precession frequency νL = νP of a slightly perturbed
circular geodesic motion that occurs at an arbitrary orbital radius
r. The precession frequency νP equals to a difference between the
Keplerian and the radial epicyclic frequency, νP = νK − νr.
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(a)

(b)

Figure 2. Correlations between the twin-peak QPO frequencies in the individual sources versus fitting relations. (a) A comparison between relation (5)
assuming B = 0.8 (solid lines) and the RP model (dashed lines). (b) A comparison between relation (5) assuming B parameter as a free parameter (solid lines)
and the CT model (dashed lines). The shaded areas denote the range in which the CT model is not applicable. For both panels of this figure, the parameters of
the individual fits are summarized in Table 1.

Török et al. (2012) have suggested a toy non-geodesic modifica-
tion of the RP model. In their paper, it is assumed that νr decreases
due to non-geodesic effects by a constant B∗ factor. The expected
lower QPO frequency is then given as

νL = ν∗
L

+ B∗ (ν∗
U

− ν∗
L

)
, (7)

where ν∗
L

and ν∗
U

denote the frequencies implied by the non-modified
RP model. The authors attempt to model the correlation of QPO
frequencies observed in the atoll source 4U 1636-53 and find that
there is good agreement between the model and the data for the NS
mass M = 1.7M� and B∗ = 0.2.

Assuming relation (7), formulae for the orbital frequencies
around a non-rotating NS, and B∗ = 1 − B, we obtain relation (5).

4.1 Global modes of fluid motion

Oscillations of tori have been studied in the context of QPOs
in a large number of works over the past decade (see, e.g.
Rezzolla, Yoshida & Zanotti 2003; Abramowicz et al. 2006;
Šrámková, Torkelsson & Abramowicz 2007; Ingram & Done 2010;
Fragile, Straub & Blaes 2016; Parthasarathy, Kluzniak &
Cemeljic 2017; Mishra et al. 2017; de Avellar et al. 2017). The
recent work of Török et al. (2016b) explores the model of an oscil-
lating torus (in next CT model). In this model, the torus is assumed
to fill up the critical equipotential volume forming a cusp. It is
suggested by the model that the twin-peak QPOs are assigned to
global modes of cusp–torus fluid motion that may give rise to strong
modulation of both the accretion disc radiation and the accretion
rate.1 The observed frequency variations are given by the changes
of the location r of the torus centre radii very close to the innermost
stable circular orbit. In the paper of Török et al. (2016b), the model
predictions are compared to the data of the atoll source 4U 1636-53
obtaining a good match.

For a fixed j and a given torus location, the frequencies predicted
by the model depend solely on the NS mass. Although the related
exact dependence νU (νL) has to be evaluated numerically, we find

1 The resulting total observed flux is given by the composition of the emis-
sivity of the boundary layer (radial mode) and the disc (radial and Keplerian
mode). Detailed modelling of contributions of particular modulation mech-
anisms can be important in relation to the recent findings of Ribeiro et al.
(2017) (see also Méndez 2006; Gilfanov et al. 2003). In this context, we note
that the considered oscillatory modes can, in principle, cause also oscillation
of the accretion disc corona.

it can be well approximated by relation (5) for B ≈ 0.8. The one-
parametric form of relation (5) investigated in Section 3.2 therefore
represents the prediction of the CT model (see Fig. 1c).

In Fig. 2b, we directly compare the predictions of the CT model
with the data of the individual sources. For sources no. 1–3, 5–7 and
10–12, the CT model allows fits comparable to those obtained for
relation (5) and B = 0.8. In Table 1, we present relevant χ2 values
along with the required values of NS mass. In the case of sources
no. 4, 8, 9, 13 and 14 (4U 1915-05, Circinus X-1, XTE J1807.4-
294, GX 5-1 and GX 340+0), the correlation however cannot be
modelled since the observed frequencies νL extend below the range
of applicability of the approximation of the torus model discussed
by Török et al. (2016b) (see the shaded areas in Fig. 2b).

5 C O N C L U S I O N S

The simple formula (5) well fits the frequencies of twin-peak QPOs
within a large group of 14 sources. This match might be of high
importance for the twin-peak QPO model identification. The fre-
quency scaling (6), ν ∝ M−1, further supports the hypothesis of
the orbital origin of NS HF QPOs since the frequencies of orbital
motion scale with the NS mass M as ν ∝ M−1. It is of a particular
interest that already the one-parametric form of our relation assum-
ing B = 0.8 describes several of these sources. We suggest that this
finding represents the NS analogy of the 1/M scaling of the 3:2
BH HF QPO frequencies (Abramowicz et al. 2004; McClintock &
Remillard 2006; Zhou et al. 2015).

A detailed physical explanation of the origin of relation (5) is not
yet clear. The recently suggested CT model reproduces the data of
nine sources. For other five sources, however, the data cannot be
firmly reproduced within the approximation developed so far. The
results obtained for relation (5) and the B free parameter can help
improve the model. Larger deviations from the case of B = 0.8 can
have a direct physical interpretation. The cause of these deviations
may be due to a torus thickness different from the cusp value, or,
more likely, by further non-geodesic effects acting on the torus
formation, such as NS magnetic field.

The above hypothesis agrees with a more general interpretation of
relation (5) in which theM parameter represents the main parameter
reflecting the space–time geometry given by the NS mass and spin,
while the B parameter reflects the additional stable factors. In this
context, we note that we have not been able to reproduce the data
for any significant group of sources assuming B as a free and M as
a fixed parameter.
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ABSTRACT

Following the previous extensive research on epicyclic oscillations of accretion disks around
black holes (BHs) and neutron stars (NSs), a new model of high-frequency quasi-periodic os-
cillations (QPOs), which deals with oscillations of fluid in marginally overflowing accretion
tori predicted by general relativity (tori terminated by cusps), has been proposed (CT model).
According to preliminary investigations based on Kerr spacetimes, the model provides overall
better fits of the NS QPO data compared to the relativistic precession (RP) model often consid-
ered in the context of NS and BH parameters estimations. It also implies a significantly higher
upper limit on the Galactic microquasars BH spin. A short analytic formula has been noticed to
well reproduce the model’s predictions on the QPO frequencies in Schwarzschild spacetimes.
Here we derive an extended version of this formula that applies to rotating compact objects. We
start with the consideration of Kerr spacetimes and derive a formula that is not restricted to a
particular specific angular momentum distribution of the inner accretion flow, such as Keplerian
or constant. Finally, we consider Hartle-Thorne spacetimes and include corrections implied by
the oblateness of rotating neutron stars. For a particular choice of a single parameter, our rela-
tion with high accuracy provides frequencies predicted by the CT model. For another value, it
provides frequencies predicted by the RP model. We conclude that the formula is well applica-
ble for rotating oblateness NSs and both models. We briefly illustrate application of our simple
formula on several NS sources and confirm the expectation that the CT model is compatible
with realistic values of the NS mass and provides better fits of data than the RP model.

Subject headings: X-ray binary stars, Black hole physics, Accretion

1. Introduction

Accreting compact sources such as low-mass X-ray binaries (LMXBs) and active galactic nuclei (AGN)
provide a unique opportunity to explore the effects associated with strong gravity in black hole (BH) and
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neutron star (NS) systems where they may also serve as a good tool for the exploration of supra-dense matter
(van der Klis 2006; Lewin & van der Klis 2010). There is a common aim within the large astrophysical
community to relate the mass and spin of the compact objects to their spectral and timing behaviour. In this
paper, we focus on the rapid X-ray variability and its models.

The high-frequency part of the power density spectra of many sources reveals more or less sharp peaks
that are called the high-frequency quasi-periodic oscillations (HF QPOs). Commonly, the HF QPOs seem
to have frequencies close to those of the orbital motion in the innermost part of a given accreting system.
Detections of elusive HF QPO peaks in BH LMXB sources have been reported at rather constant frequencies,
which tend to appear in ratios of small natural numbers (Abramowicz & Kluźniak 2001; Remillard et al.
2002; McClintock & Remillard 2006). The observed HF QPOs are however very weak and the overall
picture can be more complex (Belloni et al. 2012; Belloni & Altamirano 2013; Varniere & Rodriguez 2018).
In NS sources, HF QPOs are commonly referred to as twin-peak QPOs because they often appear in pairs
observed simultaneously at the upper and lower QPO frequency, νU > νL. Notably, robust correlations are
observed between the frequencies of twin-peak QPOs. Each source reveals its specific frequency correlation,
νU = νU(νL), although the sources roughly follow a common pattern (Psaltis et al. 1999a; Abramowicz et al.
2005b,a; Zhang et al. 2006). This is illustrated in Figure 1a where we show the frequencies of 3:2 QPOs
observed in Galactic microquasars along with the HF QPO correlations in a group of 14 NS sources.1 The
data used in the figure come from the works of Barret et al. (2005b,c); Boirin et al. (2000); Altamirano et al.
(2010); Linares et al. (2005); van der Klis et al. (1997); Boutloukos et al. (2006); Homan et al. (2002); Jonker
et al. (2000, 2002) - NSs, and Strohmayer (2001); Remillard et al. (2002); Homan et al. (2003); Remillard
et al. (2003) - BHs.

At present, there is no commonly accepted model for the observed QPOs. Based on various strong
arguments, it is nevertheless usually expected that the QPOs are related to orbital motion in the vicinity of
NSs. Miscellaneous concepts have been proposed to explain the phenomenon (e.g., Alpar & Shaham 1985;
Lamb et al. 1985; Miller et al. 1998; Psaltis et al. 1999b; Stella et al. 1999; Wagoner et al. 2001; Kluźniak &
Abramowicz 2001; Abramowicz & Kluźniak 2001; Kato 2001; Titarchuk & Wood 2002; Abramowicz et al.
2003; Rezzolla et al. 2003; Kluźniak et al. 2004; Zhang 2004; Pétri 2005; Bursa 2005; Čadež et al. 2008;
Wang et al. 2008; Mukhopadhyay 2009; Bachetti et al. 2010; Dönmez et al. 2011; Stuchlı́k & Kološ 2014;
Huang et al. 2016; Le et al. 2016; Germanà 2017; Stuchlı́k et al. 2020; Wang & Zhang 2020; Smith et al.
2021, and references therein).

In this short paper, we follow our previous work (Török et al. 2016a,b, 2018, 2019) and derive a simple
analytic formula relating the QPO frequencies to the parameters of the rotating compact objects. We also
apply this formula to the data of several NS sources.

1For the sake of simplicity, we often use the shorter term ”QPOs” instead of ”HF QPOs” or ”twin-peak QPOs” throughout the
paper.
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Fig. 1.— a) The data of several sources and examples of the expected frequency relations that are drawn
for M = 1.7M�. The expected frequency relations are drawn for a non-rotating NS. b) Sketch of the
trajectory of a test particle on slightly eccentric orbit which plays cruial role in the hot-spot interpretation of
QPOs. c) Topology of equipotential surfaces that determine the spatial distribution of fluid in thick disks.
The orange (along with yellow) region corresponds to a torus with a cusp. d) The data of the atoll source
4U 1636-53 and their best fits for non-rotating NS. For the sake of clarity, the data-set which corresponds to
the individual continuous observations is compared to the data-set associated with the common processing
of all observations (see Török et al. 2016a, for details). e) The equipressure contours seen within general
relativistic three-dimensional global radiative magnetohydrodynamic simulation of Lančová et al. (2019)
who have reported on a new class of realistic solutions of black hole accretion flows – the so-called puffy
accretion disks. f) Equidensity profiles corresponding to panel e.
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2. QPO models under consideration

We focus on two particular QPO models that deal with orbital motion of the accreted fluid. First is the
so-called relativistic precession (RP) model, which in its usual form incorporates the assumption that the
observed rapid X-ray variability originates in the local orbital motion of hot inhomogeneities orbiting in the
innermost parts of the accretion disk, such as blobs or vortices (see Abramowicz et al. 1992; Stella & Vietri
1998, 1999). The frequencies of the two observed QPOs are in this model represented by the Keplerian
frequency νK and the relativistic precession frequency νP of a slightly perturbed circular geodesic motion
occuring at an arbitrary QPO excitation orbital radius r0 (see Figure 1b),

νU(r0) = νK(r0), νL(r0) = νP(r0) . (1)

The precession frequency equals to a difference between the Keplerian and the radial epicyclic frequency,

νP(r0) = νK(r0) − νr(r0) . (2)

The RP model has been used and quoted in numerous studies. It frequently serves as a rough tool for
estimation of compact object mass based on its variability (e.g., Boutloukos et al. 2006; Barret et al. 2006;
Boutloukos et al. 2007; Barret et al. 2008; Boutloukos et al. 2008; Török et al. 2010; Lin et al. 2011; Motta
et al. 2014; du Buisson et al. 2019; Maselli et al. 2020, and references therein). Relation (1) has been shown
to roughly match the NS sources data (e.g., Morsink & Stella 1999; Stella & Vietri 1998, 1999; Belloni
et al. 2007; Lin et al. 2011; Török et al. 2012, 2016b). It is however questionable whether the local motion
of hot spots can be responsible for the observed QPOs high amplitudes and coherence times (e.g., Barret
et al. 2005a; Méndez 2006; Barret & Vaughan 2012).

The other QPO model under consideration, which was proposed recently by Török et al. (2016a),
assumes marginally overflowing accretion tori (see the works of Abramowicz & Kluźniak 2001; Kluźniak
& Abramowicz 2001; Rezzolla et al. 2003; de Avellar et al. 2018, for a broader context). This concept,
to which we in next refer as the CT model, was suggested as a disk-oscillation-based alternative to the
RP model. It utilizes the expectation that toroidal structures and cusps are likely to appear in real accretion
flows, in which case the overall accretion rate through the inner edge of the disk could be strongly modulated
by the torus oscillations (Kozlowski et al. 1978; Abramowicz et al. 1978; Paczynski & Abramowicz 1982;
Abramowicz et al. 2006; Parthasarathy et al. 2017). A sketch of the marginally overflowing acretion torus
geometry is shown in Figure 1c.

The CT model provides generally better fits of the NS data than the RP model. This is depicted in
Figure 1d. This finding is rather independent on the NS spin (Török et al. 2016a,b). The model also likely
predicts a lower NS mass compared to the RP model, which, in some cases, implies a mass estimate that
is too high (Török et al. 2016a, 2018, 2019). Moreover, the upper limit on the Galactic microquasars spin
given by this model is significantly higher than in the RP model’s case, namely j ∼ 0.75 vs. j ∼ 0.55. This
is in better agreement with the spectral spin estimates (Kotrlová et al. 2020).

An overview of the physical assumptions of the model, as well as all appropriated references, can be
found in the studies of Török et al. (2016a) and Kotrlová et al. (2020). Similarly to the RP model, the
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currently applied concept of inner torus displaying a cusp is very simplified compared to real accretion
flows. Nevertheless, it assumes a global motion of the disk fluid instead of the local motion approximated
by the test particle description within the RP model. Moreover, the structure of the inner accretion flow
observed in GRRMHD simulations often resembles those assumed within the model (see Figures 1e and f).

3. Formulae for QPO frequencies in Schwarzschild spacetimes

For a non-rotating relativistic compact star, the relation between the QPO frequencies implied by the
RP model, i.e. by Equation (1), can be written as

νL = νU

(
1 − B

√
1 − (νU/ν0)2/3

)
, (3)

where B = 1 and ν0 equal to the Keplerian frequency at the innermost stable circular orbit (ISCO). The
ISCO frequency is given solely by the gravitational mass M,

ν0 = F 1
63/2 , F ≡ c3/(2πGM) . (4)

For the CT model, the relation between the QPO frequencies also depends purely on M and can be
written in the following implicit form:

νU(r0) = νK(r0), νL(r0) = νr,m=−1 , (5)

where r0 denotes the torus centre, νK determines the torus corotation mode frequency, and νr,m=−1 equals to
the frequency of the first non-axisymmetric radial epicyclic mode calculated for the marginally overflowing
torus (i.e., the torus that forms a cusp). There is no explicit analytical evaluation of νU(νL) function and the
relation (5) must be solved numerically. It has been however noticed by Török et al. (2018) that there is a
solid analytic approximation – the numerical solution nearly coincides with relation (3) when B = 0.8. This
is illustrated in Figure 1b.

4. Rotating compact stars

It has been noticed by Török et al. (2010) that in Kerr spacetimes characterized by the j ≡ cJ/(GM2)
rotational parameter, the relation between the QPO frequencies implied by the RP model can be expressed
as

νL = νU

1 − B
1 +

8 jνU

F − jνU

− 6
(

νU

F − jνU

)2/3

−3 j2
(

νU

F − jνU

)4/3
1/2


, (6)

when one sets B = 1.
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Based on the analogy to non-rotating stars, relation (6) for a particular choice of B( j) can be expected
to reproduce the numerically calculated frequency relation given by the CT model. Having this intention in
mind, we presume a simple linear prescription,

B( j) = k j + 0.8 (7)

which results in B = 0.8 for the j = 0 limit.

We made a comparison between the predictions of relation (6) and numerically obtained CT model
predictions. The whole set of formulae necessary for the numerical calculations is given by fairly long
expressions, we therefore provide their explicit form in a Wolfram Mathematica notebook.2 A good match
between the analytical prescription and the numerically calculated predictions is found for k = −0.2 and
illustrated in Figure 2.

We note that the applicability of our result to rapidly rotating BHs is limited. The so far performed
numerical calculations of frequencies given by the CT model utilize a perturbative approach valid within
the second-order accuracy in torus thickness. Within this approach, the calculations are for high spins very
sensitive to small changes in the torus thickness and the rotational parameter. Full numerical investigation
of the Papaloizou–Pringle equation, which determines the epicyclic mode frequencies, will be needed for
rapidly rotating BHs.

5. QPO frequencies and accretion flow angular momentum distribution

Following the previous studies of Straub & Šrámková (2009), Török et al. (2016a), Fragile et al. (2016)
and Kotrlová et al. (2020), our simple formula relating the QPO frequencies and the cmpact objects mass and
spin was derived under the specific consideration of tori with constant distribution of angular momentum `

of the accreted fluid. Nevertheless, it can be easily shown that the formula is of a more general importance
since its validity is not limited to this particular `-prescription.

5.1. Range of QPO frequencies

If we replace the B factor in equation (6) by unity, we obtain exactly the prediction based on the test
particle motion. This case also describes the scenario in which the angular momentum distribution of the
accreted fluid is Keplerian. It is a limit case, in which the cross-section of the oscillating torus is infinitely
small (a parameter determining the torus thickness, β, goes to zero).

When the B factor is taken into account, we come up with a scenario in which the torus has its maximal
possible size (β = βcusp). As shown by Straub & Šrámková (2009), the m = −1 radial mode frequency
evolves as a monotonic function of the torus thickness (see Figure 3a for illustration). Accordingly, the

2https://github.com/Astrocomp/Torus_oscillations
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black curve (marked as the RP model) and the coloured curves (CT model) in Figure 2 describe the two
extreme predictions of the QPO frequencies given by equation (6). The area between these curves covers
the whole range of the QPO frequencies determined under the consideration of constant ` and any β. When
we put

B = 1 − 0.2(1 + a)
β

βcusp
, (8)

we obtain a continuous set of curves that cover the area between the limiting curves given by β = 0 and
β = βcusp.

5.2. Generalization for non-constant angular momentum distributions

The above consideration can be extended to a more general picture. In panel a) of Figure 3, we show
the behaviour of the m = −1 radial frequency (the expected lower QPO frequency) for the particular case
of ` = `const. One should note the increasing monotonic behaviour of the curves. When β increases, the
m = 0 mode frequency decreases and the m = −1 mode frequency increases getting closer to the Keplerian
frequency. The trend of the m = −1 mode frequency rising with growing size of the oscillating structure
persists for less simplified situations as well. In panels b) and c) of Figure 3, we show a sketch of a possible
parametrization of linear angular momentum distributions and its projection in the plane of the expected
QPO frequencies. Clearly, taking into account the presumption of a monotonic behaviour of the νr,m=−1(β)
function, any linear prescription for the angular momentum distribution, and all possible torus thicknesses
from the β ∈ [0, βcusp] range, the expected QPO frequencies should fall into the range denoted by the shaded
area. An analogical consideration also applies to non-linear distributions.

Overal, the narrow range between the two extremal curves given by equation (11), which is indicated
by the shaded area in Figure 3b, represents a rather general limit on the QPO frequencies valid for a variety
of plausible angular momentum distributions.

6. NSs and their oblatness

Formula (6) is valid for Kerr spacetimes relevant for black hole sources. Within a reasonable accu-
racy, it can be applied to neutron star sources as well provided that the NS mass is high. Considering the
restrictions on NS quadrupole moment q ≡ QM0/J2 given by present NS equations of state and consequent
implications on the orbital frequencies (Urbanec et al. 2013; Urbancová et al. 2019), we can estimate the un-
certainty in our formula valid for most of the available NS data. For high NS masses (typically M & 2M�)
and spins corresponding up to j ∼ 0.3, the uncertainty in NS mass induced within our formula by the
quadrupole moment should not be higher than 3%. On the other hand, for low NS masses (M . 1.4M�),
this uncertainty may exceed the value of 10%.

A modification of the formula that would be sufficiently valid for such less compact NS sources can
be obtained assuming the Hartle-Thorne geometry (Hartle 1967; Hartle & Thorne 1968), which applies to
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slowly rotating neutron stars. One may expect that the impact of the quadrupole moment consideration on
the relation between the QPO frequencies can be roughly included substituting the (rotational) 3 j2 term in
formula (6) by a simple dependency on q, Q = Q( j, q). In the limit of q = j2, the Hartle-Thorne formula
should coincide with those expressed in the Kerr spacetime (e.g., Urbancová et al. 2019) and there in

Q( j, q = j2) = 3 j2 . (9)

In analogy to Section 4, we attempt to find the best evaluation of the Q term performing numerical
calculations of the CT model frequencies in Hartle-Thorne spacetimes. We utilize the results of Kotrlová
et al. (2020) and their extension to Hartle-Thorne spacetimes. We find that the particular term

Q =
1
3

(8a2 − 17q) (10)

well matches the numerical calculations. This is illustrated in Figure 4. It is also clear from the Figure that
for B = 1 we obtain the frequencies predicted by the RP model. We note that for high QPO frequencies,
corresponding to radii close to ISCO, when νL approaches νU, there are discrepancies between the examined
relations. These follow from the limitations of the Hartle-Thorne approach, which is accurate up to the
second-order terms in q. The inaccuracies however grow only when the difference between the two QPO
frequencies, ∆ν = (νU − νL)/νL, is smaller than 10%.

7. Discussion and conclusions

For practical purposes, taking into account the ISCO frequency term for non-rotating stars, νL = νU = ν0,
equation (6) can be further rewritten into a final compact form,

νL = νU

[
1 − B

√
1 + 8 jV0 − 6V2/3

0 − QV4/3
0

]
, (11)

where
B = 0.8 − 0.2 j , V0 ≡ νU/ν0

63/2 − jνU/ν0
, ν0 = 2198

M�
M

, Q =
1
3

(8 j2 − 17q) . (12)

For the above choice of B, our relation with high accuracy provides frequencies predicted by the CT model.
Choosing a constant B, B = 1, it (almost exactly) provides frequencies predicted by the RP model. We
therefore conclude it is applicable for both models in the case of rotating oblateness NSs. For Q = 3 j2, the
relation reduces to the case of Kerr spacetimes describing rotating BHs.

7.1. Application to the atoll source 4U 1636-53 and other NSs

Following Török et al. (2016a), we apply relation 11 to the data of the atoll source 4U 1636-53. The
main outputs of our investigation are illustrated in Figure 5. Figure 5a includes examples of the best fits
given by the CT model. Fits given by the RP model are shown as well for the sake of comparison. Figure 5b
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Fig. 4.— Comparison between the expected QPO frequencies (Hartle-Thorne spacetimes). The continuous
curves denote frequencies calculated numerically for the CT and RP models. The dashed curves denote
frequencies calculated using the approximative relation for the CT (B = 0.8− 0.2 j) and RP (B = 1) models.

depicts how the best fitting M depends on j and q/ j2. It shows that for very compact with q/ j2 ∼ 1 the
best fitting M increases with increasing j, reaching values of M ∈ [2, 2.2]M� for j ∈ [0.2, 0.4]M�. This is
in agreement with the investigation of Török et al. (2016a) limited to the case of Kerr spacetimes. On the
other hand, for stars of high oblateness, q/ j2 > 4, the best fitting M decreases with increasing j. For stars of
moderate oblateness, q/ j2 ∼ 3, there is only a very weak dependency on j and the estimated mass is around
M = 1.75M�.

The same investigation was performed for the atoll source 4U 1735-44. The results are illustrated in
Figure 5 showing a picture very similar to the 4U 1636-53 case. In analogy to the 4U 1636-53 case, we
obtain fits better than those of the RP model and similar quadrupole moment dependence. For very compact
stars, q/ j2 ∼ 1, the best fitting M increases with increasing j, reaching values of M ∈ [1.9, 2.2]M� for
j ∈ [0.2, 0.4]M�, while for stars of high oblateness, q/ j2 > 4, the best fitting M decreases with increasing
j. For stars of moderate oblateness, q/ j2 ∼ 3, there is only a very weak dependency on j and the estimated
mass is around M = 1.9M�. In the same way, we investigated another four atoll sources with high amount

6.8. Mass and rapid variability of accreting compact objects 189



– 11 –

a) b)

c) d)

600

800

1000

1200

1400

500 600 700 800 900 1000 1100 1200

4U 16    -5236

nL [Hz]

n
U
[H

z]

j = 0.0
j = 0.1
j = 0.2
j = 0.3
j = 0.4

2 4 6 8 10

q j/
2

2

3

1

RP model

CT model

2

1

j = 0.0
j = 0.1
j = 0.2
j = 0.3
j = 0.4

RP model

CT model

4U 1735-44

600

800

1000

1200

1400

n
U
[H

z]

j 2= 0.

q j=     ²3

j 2= 0.

q j=     ²3

Fig. 5.— a) Best fits of the data of the 4U 1636-53 atoll source found for the RP and CT models and a
particular choice of the NS spin and oblateness. For the other choices within the considered range of param-
eters, j ∈ [0, 0.4] and q/ j2 ∈ [1, 10], the resulting fits are similar. b) The best fitting mass corresponding to
the CT model as it depends on q/ j2. c) The same as in panel a) but for the 4U 1735-44 atoll source. c) The
same as in panel b) but for the 4U 1735-44 atoll source.

of available data (Barret et al. 2005b,c; Török et al. 2012). Overall, we find that for stars of moderate
oblateness, q/ j2 ∼ 3, the mass should be within the interval of M ∈ [1.6, 1.9]M�.

These findings further confirm the expectation that the CT model not only fits the data better than the
RP model, but is also compatible with realistic values of the NS mass.

7.2. Caveats

Our finding on the NS mass needs to be expanded to a larger set of sources, namely to a full confronta-
tion of the parameters implied by the model and particular NS equations of state. It should be sufficient if
this confrontation is carried out within the framework of the Hartle-Thorne spacetime for most sources and
data except for very rapidly rotating sources and data with νU/νL < 1.2. It is questionable whether the present
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relation can be applied to sources with very strong magnetic fields such as X-ray pulsars. The applicability
of our result to rapidly rotating BHs has yet to be explored as well using the full numerical solution of the
Papaloizou–Pringle equation.

Despite these facts, we conclude that the simple relation (11) can be useful for a brief estimation of
mass and spin of accreting BHs and NSs.
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Kluźniak, W., Abramowicz, M. A., Kato, S., Lee, W. H., & Stergioulas, N. 2004, APJ, 603, L89
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Stuchlı́k, Z., Kološ, M., Kovář, J., Slaný, P., & Tursunov, A. 2020, Universe, 6, 26

Titarchuk, L., & Wood, K. 2002, APJ, 577, L23
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